Vše

Co hledáte?

Vše
Projekty
Výsledky výzkumu
Subjekty

Rychlé hledání

  • Projekty podpořené TA ČR
  • Významné projekty
  • Projekty s nejvyšší státní podporou
  • Aktuálně běžící projekty

Chytré vyhledávání

  • Takto najdu konkrétní +slovo
  • Takto z výsledků -slovo zcela vynechám
  • “Takto můžu najít celou frázi”

Comparison Of Modern Clustering Algorithms For Two-Dimensional Data

Identifikátory výsledku

  • Kód výsledku v IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F61988987%3A17310%2F14%3AA1501BBF" target="_blank" >RIV/61988987:17310/14:A1501BBF - isvavai.cz</a>

  • Výsledek na webu

  • DOI - Digital Object Identifier

Alternativní jazyky

  • Jazyk výsledku

    angličtina

  • Název v původním jazyce

    Comparison Of Modern Clustering Algorithms For Two-Dimensional Data

  • Popis výsledku v původním jazyce

    Cluster analysis or clustering is a task of grouping a set of objects in such a way that objects in the same group (called a cluster) are more similar (in some sense or another) to each other than to those in other groups (clusters). It is the main taskof exploratory data mining and a common technique for statistical data analysis used in many fields, including machine learning, pattern recognition, image analysis, information retrieval, and bioinformatics.The topic of this paper is modern methods of clustering. The paper describes the theory needed to understand the principle of clustering and descriptions of algorithms used with clustering, followed by a comparison of the chosen methods.

  • Název v anglickém jazyce

    Comparison Of Modern Clustering Algorithms For Two-Dimensional Data

  • Popis výsledku anglicky

    Cluster analysis or clustering is a task of grouping a set of objects in such a way that objects in the same group (called a cluster) are more similar (in some sense or another) to each other than to those in other groups (clusters). It is the main taskof exploratory data mining and a common technique for statistical data analysis used in many fields, including machine learning, pattern recognition, image analysis, information retrieval, and bioinformatics.The topic of this paper is modern methods of clustering. The paper describes the theory needed to understand the principle of clustering and descriptions of algorithms used with clustering, followed by a comparison of the chosen methods.

Klasifikace

  • Druh

    D - Stať ve sborníku

  • CEP obor

    IN - Informatika

  • OECD FORD obor

Návaznosti výsledku

  • Projekt

  • Návaznosti

    S - Specificky vyzkum na vysokych skolach

Ostatní

  • Rok uplatnění

    2014

  • Kód důvěrnosti údajů

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Údaje specifické pro druh výsledku

  • Název statě ve sborníku

    PROCEEDINGS 28th European Conference on Modelling and Simulation ECMS 2014

  • ISBN

    978-0-9564944-8-1

  • ISSN

  • e-ISSN

  • Počet stran výsledku

    6

  • Strana od-do

    346-451

  • Název nakladatele

    European Council for Modelling and Simulation

  • Místo vydání

    Sbr.-Dudweiler, Germany

  • Místo konání akce

    Brescia, Italy

  • Datum konání akce

    27. 5. 2014

  • Typ akce podle státní příslušnosti

    WRD - Celosvětová akce

  • Kód UT WoS článku