A compendium of Lie structures on tensor products
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F61988987%3A17310%2F14%3AA1501CXJ" target="_blank" >RIV/61988987:17310/14:A1501CXJ - isvavai.cz</a>
Výsledek na webu
—
DOI - Digital Object Identifier
—
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
A compendium of Lie structures on tensor products
Popis výsledku v původním jazyce
We demonstrate how a simple linear-algebraic technique used earlier to compute low-degree cohomology of current Lie algebras, can be utilized to compute other kinds of structures on such Lie algebras, and discuss further generalizations, applications, and related questions. While doing so, we touch upon such seemingly diverse topics as associative algebras of infinite representation type, Hom-Lie structures, Poisson brackets of hydrodynamic type, Novikov algebras, simple Lie algebras in small characteristics, and Koszul dual operads.
Název v anglickém jazyce
A compendium of Lie structures on tensor products
Popis výsledku anglicky
We demonstrate how a simple linear-algebraic technique used earlier to compute low-degree cohomology of current Lie algebras, can be utilized to compute other kinds of structures on such Lie algebras, and discuss further generalizations, applications, and related questions. While doing so, we touch upon such seemingly diverse topics as associative algebras of infinite representation type, Hom-Lie structures, Poisson brackets of hydrodynamic type, Novikov algebras, simple Lie algebras in small characteristics, and Koszul dual operads.
Klasifikace
Druh
J<sub>x</sub> - Nezařazeno - Článek v odborném periodiku (Jimp, Jsc a Jost)
CEP obor
BA - Obecná matematika
OECD FORD obor
—
Návaznosti výsledku
Projekt
—
Návaznosti
V - Vyzkumna aktivita podporovana z jinych verejnych zdroju
Ostatní
Rok uplatnění
2014
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název periodika
Journal of Mathematical Sciences
ISSN
1573-8795
e-ISSN
—
Svazek periodika
199
Číslo periodika v rámci svazku
3
Stát vydavatele periodika
US - Spojené státy americké
Počet stran výsledku
23
Strana od-do
266-288
Kód UT WoS článku
—
EID výsledku v databázi Scopus
—