Unconventional heuristics for vehicle routing problems
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F61988987%3A17310%2F16%3AA1701HAL" target="_blank" >RIV/61988987:17310/16:A1701HAL - isvavai.cz</a>
Výsledek na webu
—
DOI - Digital Object Identifier
—
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Unconventional heuristics for vehicle routing problems
Popis výsledku v původním jazyce
The Vehicle Routing Problem (VRP) is one of the most challenging combinatorial optimization tasks. This problem consists in designing an optimal set of routes for a fleet of vehicles in order to serve a given set of customers. Vehicle routing problem forms an integral part of the supply chain management, which plays a significant role in productivity improvement in organizations through an efficient and effective delivery of goods/services to customers. This problem is known to be NP-hard; hence many heuristic procedures for its solution have been suggested. For such problems, it is often desirable to obtain approximate solutions, so they can be found fast enough and are sufficiently accurate for the purpose. In this paper, we have performed an experimental study that indicates a suitable use of genetic algorithms for the vehicle routing problem. We tested instances from Capacitated Vehicle Routing Problem Library (CVRPLIB) series A, B, E, M and X. The obtained experimental outputs were compared with the following heuristics: the Clarke and Wright heuristic, sweep algorithm, and Taillard?s algorithm. © European Society of Computational Methods in Sciences and Engineering.
Název v anglickém jazyce
Unconventional heuristics for vehicle routing problems
Popis výsledku anglicky
The Vehicle Routing Problem (VRP) is one of the most challenging combinatorial optimization tasks. This problem consists in designing an optimal set of routes for a fleet of vehicles in order to serve a given set of customers. Vehicle routing problem forms an integral part of the supply chain management, which plays a significant role in productivity improvement in organizations through an efficient and effective delivery of goods/services to customers. This problem is known to be NP-hard; hence many heuristic procedures for its solution have been suggested. For such problems, it is often desirable to obtain approximate solutions, so they can be found fast enough and are sufficiently accurate for the purpose. In this paper, we have performed an experimental study that indicates a suitable use of genetic algorithms for the vehicle routing problem. We tested instances from Capacitated Vehicle Routing Problem Library (CVRPLIB) series A, B, E, M and X. The obtained experimental outputs were compared with the following heuristics: the Clarke and Wright heuristic, sweep algorithm, and Taillard?s algorithm. © European Society of Computational Methods in Sciences and Engineering.
Klasifikace
Druh
J<sub>x</sub> - Nezařazeno - Článek v odborném periodiku (Jimp, Jsc a Jost)
CEP obor
IN - Informatika
OECD FORD obor
—
Návaznosti výsledku
Projekt
—
Návaznosti
S - Specificky vyzkum na vysokych skolach
Ostatní
Rok uplatnění
2016
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název periodika
Journal of Numerical Analysis, Industrial and Applied Mathematics
ISSN
1790-8140
e-ISSN
—
Svazek periodika
9-10
Číslo periodika v rámci svazku
3-4
Stát vydavatele periodika
GR - Řecká republika
Počet stran výsledku
11
Strana od-do
57-67
Kód UT WoS článku
—
EID výsledku v databázi Scopus
2-s2.0-84975263152