Vše

Co hledáte?

Vše
Projekty
Výsledky výzkumu
Subjekty

Rychlé hledání

  • Projekty podpořené TA ČR
  • Významné projekty
  • Projekty s nejvyšší státní podporou
  • Aktuálně běžící projekty

Chytré vyhledávání

  • Takto najdu konkrétní +slovo
  • Takto z výsledků -slovo zcela vynechám
  • “Takto můžu najít celou frázi”

Guaranteed Training Set for Associative Networks

Identifikátory výsledku

  • Kód výsledku v IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F61988987%3A17310%2F17%3AA1801QXV" target="_blank" >RIV/61988987:17310/17:A1801QXV - isvavai.cz</a>

  • Výsledek na webu

    <a href="https://link.springer.com/chapter/10.1007%2F978-3-319-58088-3_13" target="_blank" >https://link.springer.com/chapter/10.1007%2F978-3-319-58088-3_13</a>

  • DOI - Digital Object Identifier

    <a href="http://dx.doi.org/10.1007/978-3-319-58088-3_13" target="_blank" >10.1007/978-3-319-58088-3_13</a>

Alternativní jazyky

  • Jazyk výsledku

    angličtina

  • Název v původním jazyce

    Guaranteed Training Set for Associative Networks

  • Popis výsledku v původním jazyce

    The focus in this paper is on the proposal of guaranteed patterns in the training set for associative networks. All proposed patterns are pseudoortogonal and they also fulfil stability condition. Patterns were stored into the matrix using Hebb rules for associative networks. In the experimental study, we tested which from the heteroassociative Bidirectional Associative Memory (BAM) and autoassociative Hopfield network is more effective when working with the proposed patterns and what are the possibilities for Hopfield networks when working with real patterns. The comparison was made in order to recognize various damaged images using both types of associative networks. All obtained results are presented in tables or in graphs.

  • Název v anglickém jazyce

    Guaranteed Training Set for Associative Networks

  • Popis výsledku anglicky

    The focus in this paper is on the proposal of guaranteed patterns in the training set for associative networks. All proposed patterns are pseudoortogonal and they also fulfil stability condition. Patterns were stored into the matrix using Hebb rules for associative networks. In the experimental study, we tested which from the heteroassociative Bidirectional Associative Memory (BAM) and autoassociative Hopfield network is more effective when working with the proposed patterns and what are the possibilities for Hopfield networks when working with real patterns. The comparison was made in order to recognize various damaged images using both types of associative networks. All obtained results are presented in tables or in graphs.

Klasifikace

  • Druh

    D - Stať ve sborníku

  • CEP obor

  • OECD FORD obor

    10200 - Computer and information sciences

Návaznosti výsledku

  • Projekt

  • Návaznosti

    S - Specificky vyzkum na vysokych skolach

Ostatní

  • Rok uplatnění

    2017

  • Kód důvěrnosti údajů

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Údaje specifické pro druh výsledku

  • Název statě ve sborníku

    Advances in Intelligent Systems and Computing

  • ISBN

    978-331958087-6

  • ISSN

    2194-5357

  • e-ISSN

  • Počet stran výsledku

    11

  • Strana od-do

    136-146

  • Název nakladatele

    Springer Verlag

  • Místo vydání

    Cham, Switzerland

  • Místo konání akce

    Brno

  • Datum konání akce

    8. 6. 2016

  • Typ akce podle státní příslušnosti

    WRD - Celosvětová akce

  • Kód UT WoS článku