Redox transients of P680 associated with the incremental chlorophyll-a fluorescence yield rises elicited by a series of saturating flashes in diuron-treated Photosystem II core complex of Thermosynechococcus vulcanus
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F61988987%3A17310%2F19%3AA2001YBO" target="_blank" >RIV/61988987:17310/19:A2001YBO - isvavai.cz</a>
Výsledek na webu
<a href="https://onlinelibrary.wiley.com/doi/10.1111/ppl.12945" target="_blank" >https://onlinelibrary.wiley.com/doi/10.1111/ppl.12945</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1111/ppl.12945" target="_blank" >10.1111/ppl.12945</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Redox transients of P680 associated with the incremental chlorophyll-a fluorescence yield rises elicited by a series of saturating flashes in diuron-treated Photosystem II core complex of Thermosynechococcus vulcanus
Popis výsledku v původním jazyce
Recent chlorophyll-a fluorescence yield measurements, using single-turnover saturating flashes (STSFs), have revealed the involvement of a rate-limiting step in the reactions following the charge separation induced by the first flash. As also shown here, in diuron-inhibited PSII core complexes isolated from Thermosynechococcus vulcanus the fluorescence maximum could only be reached by a train of STSFs. In order to elucidate the origin of the fluorescence yield increments in STSF series, we performed transient absorption measurements at 819nm, reflecting the photooxidation and re-reduction kinetics of the primary electron donor P680. Upon single flash excitation of the dark-adapted sample, the decay kinetics could be described with lifetimes of 17ns (approximate to 50%) and 167ns (approximate to 30%), and a longer-lived component (approximate to 20%). This kinetics are attributed to re-reduction of P680(center dot+) by the donor side of PSII. In contrast, upon second-flash (with t between 5s and 100ms) or repetitive excitation, the 819nm absorption changes decayed with lifetimes of about 2ns (approximate to 60%) and 10ns (approximate to 30%), attributed to recombination of the primary radical pair P680(center dot+)Pheo(center dot-), and a small longer-lived component (approximate to 10%). These data confirm that only the first STSF is capable of generating stable charge separation-leading to the reduction of Q(A); and thus, the fluorescence yield increments elicited by the consecutive flashes must have a different physical origin. Our double-flash experiments indicate that the rate-limiting steps, detected by chlorophyll-a fluorescence, are not correlated with the turnover of P680.
Název v anglickém jazyce
Redox transients of P680 associated with the incremental chlorophyll-a fluorescence yield rises elicited by a series of saturating flashes in diuron-treated Photosystem II core complex of Thermosynechococcus vulcanus
Popis výsledku anglicky
Recent chlorophyll-a fluorescence yield measurements, using single-turnover saturating flashes (STSFs), have revealed the involvement of a rate-limiting step in the reactions following the charge separation induced by the first flash. As also shown here, in diuron-inhibited PSII core complexes isolated from Thermosynechococcus vulcanus the fluorescence maximum could only be reached by a train of STSFs. In order to elucidate the origin of the fluorescence yield increments in STSF series, we performed transient absorption measurements at 819nm, reflecting the photooxidation and re-reduction kinetics of the primary electron donor P680. Upon single flash excitation of the dark-adapted sample, the decay kinetics could be described with lifetimes of 17ns (approximate to 50%) and 167ns (approximate to 30%), and a longer-lived component (approximate to 20%). This kinetics are attributed to re-reduction of P680(center dot+) by the donor side of PSII. In contrast, upon second-flash (with t between 5s and 100ms) or repetitive excitation, the 819nm absorption changes decayed with lifetimes of about 2ns (approximate to 60%) and 10ns (approximate to 30%), attributed to recombination of the primary radical pair P680(center dot+)Pheo(center dot-), and a small longer-lived component (approximate to 10%). These data confirm that only the first STSF is capable of generating stable charge separation-leading to the reduction of Q(A); and thus, the fluorescence yield increments elicited by the consecutive flashes must have a different physical origin. Our double-flash experiments indicate that the rate-limiting steps, detected by chlorophyll-a fluorescence, are not correlated with the turnover of P680.
Klasifikace
Druh
J<sub>imp</sub> - Článek v periodiku v databázi Web of Science
CEP obor
—
OECD FORD obor
10610 - Biophysics
Návaznosti výsledku
Projekt
—
Návaznosti
I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace
Ostatní
Rok uplatnění
2019
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název periodika
Physiologia Plantarum
ISSN
0031-9317
e-ISSN
1399-3054
Svazek periodika
166
Číslo periodika v rámci svazku
1
Stát vydavatele periodika
US - Spojené státy americké
Počet stran výsledku
11
Strana od-do
22-32
Kód UT WoS článku
000466108300004
EID výsledku v databázi Scopus
2-s2.0-85064712279