Higher Order Dirichlet-Type Problems in 2D Complex Quaternionic Analysis
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F61988987%3A17310%2F19%3AA20021T3" target="_blank" >RIV/61988987:17310/19:A20021T3 - isvavai.cz</a>
Výsledek na webu
<a href="https://link.springer.com/article/10.1134/S1063454119040083" target="_blank" >https://link.springer.com/article/10.1134/S1063454119040083</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1134/S1063454119040083" target="_blank" >10.1134/S1063454119040083</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Higher Order Dirichlet-Type Problems in 2D Complex Quaternionic Analysis
Popis výsledku v původním jazyce
It is well known that developing methods for solving Dirichlet problems is important and relevant for various areas of mathematical physics related to the Laplace equation, the Helmholtz equation, the Stokes equation, the Maxwell equation, the Dirac equation, and others. The author in previous papers studied the solvability of Dirichlet boundary value problems of the first and second orders in quaternionic analysis. In the present paper, we study a higher-order Dirichlet boundary value problem associated with the two-dimensional Helmholtz equation with complex potential. The exis- tence and uniqueness of a solution to the Dirichlet boundary value problem in the two-dimensional case is proved and an appropriate representation formula for the solution of this problem is found. Most Dirichlet problems are solved for the case in three variables. Note that the case of two variables is not a simple consequence of the three-dimensional case. To solve the problem, we use the method of orthogonal decomposition of the quaternion-valued Sobolev space. This orthogonal decomposi- tion of the space is also a tool for the study of many elliptic boundary value problems that arise in var- ious areas of mathematics and mathematical physics. An orthogonal decomposition of the quater- nion-valued Sobolev space with respect to the high-order Dirac operator is also obtained in this paper.
Název v anglickém jazyce
Higher Order Dirichlet-Type Problems in 2D Complex Quaternionic Analysis
Popis výsledku anglicky
It is well known that developing methods for solving Dirichlet problems is important and relevant for various areas of mathematical physics related to the Laplace equation, the Helmholtz equation, the Stokes equation, the Maxwell equation, the Dirac equation, and others. The author in previous papers studied the solvability of Dirichlet boundary value problems of the first and second orders in quaternionic analysis. In the present paper, we study a higher-order Dirichlet boundary value problem associated with the two-dimensional Helmholtz equation with complex potential. The exis- tence and uniqueness of a solution to the Dirichlet boundary value problem in the two-dimensional case is proved and an appropriate representation formula for the solution of this problem is found. Most Dirichlet problems are solved for the case in three variables. Note that the case of two variables is not a simple consequence of the three-dimensional case. To solve the problem, we use the method of orthogonal decomposition of the quaternion-valued Sobolev space. This orthogonal decomposi- tion of the space is also a tool for the study of many elliptic boundary value problems that arise in var- ious areas of mathematics and mathematical physics. An orthogonal decomposition of the quater- nion-valued Sobolev space with respect to the high-order Dirac operator is also obtained in this paper.
Klasifikace
Druh
J<sub>imp</sub> - Článek v periodiku v databázi Web of Science
CEP obor
—
OECD FORD obor
10101 - Pure mathematics
Návaznosti výsledku
Projekt
—
Návaznosti
S - Specificky vyzkum na vysokych skolach
Ostatní
Rok uplatnění
2019
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název periodika
Vestnik St. Petersburg University, Mathematics
ISSN
1063-4541
e-ISSN
—
Svazek periodika
52
Číslo periodika v rámci svazku
4
Stát vydavatele periodika
RU - Ruská federace
Počet stran výsledku
12
Strana od-do
646-658
Kód UT WoS článku
000511668500010
EID výsledku v databázi Scopus
2-s2.0-85077032591