Nonlinear Dynamics from Linear Quantum Evolutions
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F61988987%3A17310%2F19%3AA200232C" target="_blank" >RIV/61988987:17310/19:A200232C - isvavai.cz</a>
Výsledek na webu
<a href="https://www.sciencedirect.com/science/article/abs/pii/S000349161930212X" target="_blank" >https://www.sciencedirect.com/science/article/abs/pii/S000349161930212X</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1016/j.aop.2019.167957" target="_blank" >10.1016/j.aop.2019.167957</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Nonlinear Dynamics from Linear Quantum Evolutions
Popis výsledku v původním jazyce
Linear dynamics restricted to invariant submanifolds generally gives rise to nonlinear dynamics. Submanifolds in the quantum framework may emerge for several reasons: one could be interested in specific properties possessed by a given family of states, either as a consequence of experimental constraints or inside an approximation scheme. In this work we investigate such issues in connection with a one parameter group ϕt of transformations on a Hilbert space, H, defining the unitary evolutions of a chosen quantum system. Two procedures will be presented: the first one consists in the restriction of the vector field associated with the Schrödinger equation to a submanifold invariant under the flow ϕt. The second one makes use of the Lagrangian formalism and can be extended also to non-invariant submanifolds, even if in such a case the resulting dynamics is only an approximation of the flow ϕt. Such a result, therefore, should be conceived as a generalization of the variational method already employed for stationary problems.
Název v anglickém jazyce
Nonlinear Dynamics from Linear Quantum Evolutions
Popis výsledku anglicky
Linear dynamics restricted to invariant submanifolds generally gives rise to nonlinear dynamics. Submanifolds in the quantum framework may emerge for several reasons: one could be interested in specific properties possessed by a given family of states, either as a consequence of experimental constraints or inside an approximation scheme. In this work we investigate such issues in connection with a one parameter group ϕt of transformations on a Hilbert space, H, defining the unitary evolutions of a chosen quantum system. Two procedures will be presented: the first one consists in the restriction of the vector field associated with the Schrödinger equation to a submanifold invariant under the flow ϕt. The second one makes use of the Lagrangian formalism and can be extended also to non-invariant submanifolds, even if in such a case the resulting dynamics is only an approximation of the flow ϕt. Such a result, therefore, should be conceived as a generalization of the variational method already employed for stationary problems.
Klasifikace
Druh
J<sub>imp</sub> - Článek v periodiku v databázi Web of Science
CEP obor
—
OECD FORD obor
10101 - Pure mathematics
Návaznosti výsledku
Projekt
—
Návaznosti
S - Specificky vyzkum na vysokych skolach
Ostatní
Rok uplatnění
2019
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název periodika
ANN PHYS-NEW YORK
ISSN
0003-4916
e-ISSN
—
Svazek periodika
411
Číslo periodika v rámci svazku
December 2019
Stát vydavatele periodika
US - Spojené státy americké
Počet stran výsledku
38
Strana od-do
167957
Kód UT WoS článku
000502886800016
EID výsledku v databázi Scopus
2-s2.0-85073540485