Vše

Co hledáte?

Vše
Projekty
Výsledky výzkumu
Subjekty

Rychlé hledání

  • Projekty podpořené TA ČR
  • Významné projekty
  • Projekty s nejvyšší státní podporou
  • Aktuálně běžící projekty

Chytré vyhledávání

  • Takto najdu konkrétní +slovo
  • Takto z výsledků -slovo zcela vynechám
  • “Takto můžu najít celou frázi”

A hybrid recommender system for recommending relevant movies using an expert system

Identifikátory výsledku

  • Kód výsledku v IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F61988987%3A17310%2F20%3AA210268W" target="_blank" >RIV/61988987:17310/20:A210268W - isvavai.cz</a>

  • Výsledek na webu

    <a href="https://www.sciencedirect.com/science/article/abs/pii/S0957417420302761" target="_blank" >https://www.sciencedirect.com/science/article/abs/pii/S0957417420302761</a>

  • DOI - Digital Object Identifier

    <a href="http://dx.doi.org/10.1016/j.eswa.2020.113452" target="_blank" >10.1016/j.eswa.2020.113452</a>

Alternativní jazyky

  • Jazyk výsledku

    angličtina

  • Název v původním jazyce

    A hybrid recommender system for recommending relevant movies using an expert system

  • Popis výsledku v původním jazyce

    Currently, the Internet contains a large amount of information, which must then be filtered to deter- mine suitability for certain users. Recommender systems are a very suitable tool for this purpose. In this paper, we propose a monolithic hybrid recommender system called Predictory, which combines a recom- mender module composed of a collaborative filtering system (using the SVD algorithm), a content-based system, and a fuzzy expert system. The proposed system serves to recommend suitable movies. The sys- tem works with favorite and unpopular genres of the user, while the final list of recommended movies is determined using a fuzzy expert system, which evaluates the importance of the movies. The expert sys- tem works with several parameters –average movie rating, number of ratings, and the level of similarity between already rated movies. Therefore, our system achieves better results than traditional approaches, such as collaborative filtering systems, content-based systems, and weighted hybrid systems. The system verification based on standard metrics (precision, recall, F1-measure) achieves results over 80%. The main contribution is the creation of a complex hybrid system in the area of movie recommendation, which has been verified on a group of users using the MovieLens dataset and compared with other traditional recommender systems.

  • Název v anglickém jazyce

    A hybrid recommender system for recommending relevant movies using an expert system

  • Popis výsledku anglicky

    Currently, the Internet contains a large amount of information, which must then be filtered to deter- mine suitability for certain users. Recommender systems are a very suitable tool for this purpose. In this paper, we propose a monolithic hybrid recommender system called Predictory, which combines a recom- mender module composed of a collaborative filtering system (using the SVD algorithm), a content-based system, and a fuzzy expert system. The proposed system serves to recommend suitable movies. The sys- tem works with favorite and unpopular genres of the user, while the final list of recommended movies is determined using a fuzzy expert system, which evaluates the importance of the movies. The expert sys- tem works with several parameters –average movie rating, number of ratings, and the level of similarity between already rated movies. Therefore, our system achieves better results than traditional approaches, such as collaborative filtering systems, content-based systems, and weighted hybrid systems. The system verification based on standard metrics (precision, recall, F1-measure) achieves results over 80%. The main contribution is the creation of a complex hybrid system in the area of movie recommendation, which has been verified on a group of users using the MovieLens dataset and compared with other traditional recommender systems.

Klasifikace

  • Druh

    J<sub>imp</sub> - Článek v periodiku v databázi Web of Science

  • CEP obor

  • OECD FORD obor

    10201 - Computer sciences, information science, bioinformathics (hardware development to be 2.2, social aspect to be 5.8)

Návaznosti výsledku

  • Projekt

  • Návaznosti

    S - Specificky vyzkum na vysokych skolach

Ostatní

  • Rok uplatnění

    2020

  • Kód důvěrnosti údajů

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Údaje specifické pro druh výsledku

  • Název periodika

    Expert Systems with Applications

  • ISSN

    0957-4174

  • e-ISSN

    1873-6793

  • Svazek periodika

    158

  • Číslo periodika v rámci svazku

    3

  • Stát vydavatele periodika

    NL - Nizozemsko

  • Počet stran výsledku

    18

  • Strana od-do

  • Kód UT WoS článku

    000571732700005

  • EID výsledku v databázi Scopus

    2-s2.0-85084826532