A hybrid recommender system for recommending relevant movies using an expert system
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F61988987%3A17310%2F20%3AA210268W" target="_blank" >RIV/61988987:17310/20:A210268W - isvavai.cz</a>
Výsledek na webu
<a href="https://www.sciencedirect.com/science/article/abs/pii/S0957417420302761" target="_blank" >https://www.sciencedirect.com/science/article/abs/pii/S0957417420302761</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1016/j.eswa.2020.113452" target="_blank" >10.1016/j.eswa.2020.113452</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
A hybrid recommender system for recommending relevant movies using an expert system
Popis výsledku v původním jazyce
Currently, the Internet contains a large amount of information, which must then be filtered to deter- mine suitability for certain users. Recommender systems are a very suitable tool for this purpose. In this paper, we propose a monolithic hybrid recommender system called Predictory, which combines a recom- mender module composed of a collaborative filtering system (using the SVD algorithm), a content-based system, and a fuzzy expert system. The proposed system serves to recommend suitable movies. The sys- tem works with favorite and unpopular genres of the user, while the final list of recommended movies is determined using a fuzzy expert system, which evaluates the importance of the movies. The expert sys- tem works with several parameters –average movie rating, number of ratings, and the level of similarity between already rated movies. Therefore, our system achieves better results than traditional approaches, such as collaborative filtering systems, content-based systems, and weighted hybrid systems. The system verification based on standard metrics (precision, recall, F1-measure) achieves results over 80%. The main contribution is the creation of a complex hybrid system in the area of movie recommendation, which has been verified on a group of users using the MovieLens dataset and compared with other traditional recommender systems.
Název v anglickém jazyce
A hybrid recommender system for recommending relevant movies using an expert system
Popis výsledku anglicky
Currently, the Internet contains a large amount of information, which must then be filtered to deter- mine suitability for certain users. Recommender systems are a very suitable tool for this purpose. In this paper, we propose a monolithic hybrid recommender system called Predictory, which combines a recom- mender module composed of a collaborative filtering system (using the SVD algorithm), a content-based system, and a fuzzy expert system. The proposed system serves to recommend suitable movies. The sys- tem works with favorite and unpopular genres of the user, while the final list of recommended movies is determined using a fuzzy expert system, which evaluates the importance of the movies. The expert sys- tem works with several parameters –average movie rating, number of ratings, and the level of similarity between already rated movies. Therefore, our system achieves better results than traditional approaches, such as collaborative filtering systems, content-based systems, and weighted hybrid systems. The system verification based on standard metrics (precision, recall, F1-measure) achieves results over 80%. The main contribution is the creation of a complex hybrid system in the area of movie recommendation, which has been verified on a group of users using the MovieLens dataset and compared with other traditional recommender systems.
Klasifikace
Druh
J<sub>imp</sub> - Článek v periodiku v databázi Web of Science
CEP obor
—
OECD FORD obor
10201 - Computer sciences, information science, bioinformathics (hardware development to be 2.2, social aspect to be 5.8)
Návaznosti výsledku
Projekt
—
Návaznosti
S - Specificky vyzkum na vysokych skolach
Ostatní
Rok uplatnění
2020
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název periodika
Expert Systems with Applications
ISSN
0957-4174
e-ISSN
1873-6793
Svazek periodika
158
Číslo periodika v rámci svazku
3
Stát vydavatele periodika
NL - Nizozemsko
Počet stran výsledku
18
Strana od-do
—
Kód UT WoS článku
000571732700005
EID výsledku v databázi Scopus
2-s2.0-85084826532