A hybrid recommender system for an online store using a fuzzy expert system
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F61988987%3A17310%2F23%3AA2402GNH" target="_blank" >RIV/61988987:17310/23:A2402GNH - isvavai.cz</a>
Výsledek na webu
<a href="https://www.sciencedirect.com/science/article/pii/S0957417422016293" target="_blank" >https://www.sciencedirect.com/science/article/pii/S0957417422016293</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1016/j.eswa.2022.118565" target="_blank" >10.1016/j.eswa.2022.118565</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
A hybrid recommender system for an online store using a fuzzy expert system
Popis výsledku v původním jazyce
Nowadays, various recommender systems are popular and their main aim is to recommend suitable content to the user based on various parameters. This article proposes a hybrid recommender system, Eshop recommender, which combines a recommender module composed of three subsystems (the subsystems use collaborative-filtering and content-based approaches) and a fuzzy expert system. It is an e-shopping recommender system for suggesting suitable products. The system works with different user preferences and their activity on the e-shop, and the resulting list of recommended products is created using the fuzzy expert system. The expert system works with several parameters - similarity level with already rated products, coefficient of purchased product, and an average rating of the product. Due to this, our proposed system achieves promising results based on standard metrics (Precision, Recall, F1-measure). The system achieves results above 90%. The system also achieves better results than traditional approaches. The main contribution is creating a comprehensive hybrid system in the area of product recommendation in an online store, which has been validated on a group of real users and compared with other traditional approaches and the recommendation module of another online store.
Název v anglickém jazyce
A hybrid recommender system for an online store using a fuzzy expert system
Popis výsledku anglicky
Nowadays, various recommender systems are popular and their main aim is to recommend suitable content to the user based on various parameters. This article proposes a hybrid recommender system, Eshop recommender, which combines a recommender module composed of three subsystems (the subsystems use collaborative-filtering and content-based approaches) and a fuzzy expert system. It is an e-shopping recommender system for suggesting suitable products. The system works with different user preferences and their activity on the e-shop, and the resulting list of recommended products is created using the fuzzy expert system. The expert system works with several parameters - similarity level with already rated products, coefficient of purchased product, and an average rating of the product. Due to this, our proposed system achieves promising results based on standard metrics (Precision, Recall, F1-measure). The system achieves results above 90%. The system also achieves better results than traditional approaches. The main contribution is creating a comprehensive hybrid system in the area of product recommendation in an online store, which has been validated on a group of real users and compared with other traditional approaches and the recommendation module of another online store.
Klasifikace
Druh
J<sub>imp</sub> - Článek v periodiku v databázi Web of Science
CEP obor
—
OECD FORD obor
10201 - Computer sciences, information science, bioinformathics (hardware development to be 2.2, social aspect to be 5.8)
Návaznosti výsledku
Projekt
—
Návaznosti
S - Specificky vyzkum na vysokych skolach
Ostatní
Rok uplatnění
2023
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název periodika
Expert Systems with Applications
ISSN
0957-4174
e-ISSN
1873-6793
Svazek periodika
—
Číslo periodika v rámci svazku
February 2023
Stát vydavatele periodika
GB - Spojené království Velké Británie a Severního Irska
Počet stran výsledku
16
Strana od-do
—
Kód UT WoS článku
000870936600008
EID výsledku v databázi Scopus
2-s2.0-85137594859