Differential Evolution with Distance-based Mutation-selection Applied to CEC 2021 Single Objective Numerical Optimisation
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F61988987%3A17310%2F21%3AA2202A06" target="_blank" >RIV/61988987:17310/21:A2202A06 - isvavai.cz</a>
Výsledek na webu
—
DOI - Digital Object Identifier
—
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Differential Evolution with Distance-based Mutation-selection Applied to CEC 2021 Single Objective Numerical Optimisation
Popis výsledku v původním jazyce
A Differential Evolution (DE) algorithm with distance-based mutation-selection, population size reduction, and an optional external archive (DEDMNA) is proposed and tested on the CEC 2021 benchmark suite. The three well-known mutation variants are chosen in combination with one crossover for this model. The distances of three newly generated positions are computed to select the most proper position to evaluate. In the proposed algorithm, an efficient linear population-size reduction mechanism is applied. Moreover, an archive is employed to store older effective solutions. The provided results show that the proposed variant of DEDMNA is able to solve 64 out of 160 optimisation problems. Moreover, DEDMNA outperforms the efficient adaptive j2020 variant in 102 problems, and it is worse only in 15 problems out of 160. From the comparison of DEDMNA with five state-of-the-art DE algorithms, the superiority of DEDMNA is obvious.
Název v anglickém jazyce
Differential Evolution with Distance-based Mutation-selection Applied to CEC 2021 Single Objective Numerical Optimisation
Popis výsledku anglicky
A Differential Evolution (DE) algorithm with distance-based mutation-selection, population size reduction, and an optional external archive (DEDMNA) is proposed and tested on the CEC 2021 benchmark suite. The three well-known mutation variants are chosen in combination with one crossover for this model. The distances of three newly generated positions are computed to select the most proper position to evaluate. In the proposed algorithm, an efficient linear population-size reduction mechanism is applied. Moreover, an archive is employed to store older effective solutions. The provided results show that the proposed variant of DEDMNA is able to solve 64 out of 160 optimisation problems. Moreover, DEDMNA outperforms the efficient adaptive j2020 variant in 102 problems, and it is worse only in 15 problems out of 160. From the comparison of DEDMNA with five state-of-the-art DE algorithms, the superiority of DEDMNA is obvious.
Klasifikace
Druh
D - Stať ve sborníku
CEP obor
—
OECD FORD obor
10102 - Applied mathematics
Návaznosti výsledku
Projekt
—
Návaznosti
S - Specificky vyzkum na vysokych skolach
Ostatní
Rok uplatnění
2021
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název statě ve sborníku
2021 IEEE Congress on Evolutionary Computation (CEC)
ISBN
978-1-7281-8393-0
ISSN
—
e-ISSN
—
Počet stran výsledku
8
Strana od-do
453-460
Název nakladatele
IEEE
Místo vydání
Piscataway, NJ, USA
Místo konání akce
Krakow, Poland
Datum konání akce
28. 6. 2021
Typ akce podle státní příslušnosti
WRD - Celosvětová akce
Kód UT WoS článku
—