The Real-Life Application of Differential Evolution with a Distance-Based Mutation-Selection
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F61988987%3A17310%2F21%3AA2202A50" target="_blank" >RIV/61988987:17310/21:A2202A50 - isvavai.cz</a>
Výsledek na webu
<a href="https://www.mdpi.com/2227-7390/9/16/1909" target="_blank" >https://www.mdpi.com/2227-7390/9/16/1909</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.3390/math9161909" target="_blank" >10.3390/math9161909</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
The Real-Life Application of Differential Evolution with a Distance-Based Mutation-Selection
Popis výsledku v původním jazyce
This paper proposes the real-world application of the Differential Evolution (DE) algorithm using, distance-based mutation-selection, population size adaptation, and an archive for solutions (DEDMNA). This simple framework uses three widely-used mutation types with the application of binomial crossover. For each solution, the most proper position prior to evaluation is selected using the Euclidean distances of three newly generated positions. Moreover, an efficient linear population-size reduction mechanism is employed. Furthermore, an archive of older efficient solutions is used. The DEDMNA algorithm is applied to three real-life engineering problems and 13 constrained problems. Seven well-known state-of-the-art DE algorithms are used to compare the efficiency of DEDMNA. The performance of DEDMNA and other algorithms are comparatively assessed using statistical methods. The results obtained show that DEDMNA is a very comparable optimiser compared to the best performing DE variants. The simple idea of measuring the distance of the mutant solutions increases the performance of DE significantly.
Název v anglickém jazyce
The Real-Life Application of Differential Evolution with a Distance-Based Mutation-Selection
Popis výsledku anglicky
This paper proposes the real-world application of the Differential Evolution (DE) algorithm using, distance-based mutation-selection, population size adaptation, and an archive for solutions (DEDMNA). This simple framework uses three widely-used mutation types with the application of binomial crossover. For each solution, the most proper position prior to evaluation is selected using the Euclidean distances of three newly generated positions. Moreover, an efficient linear population-size reduction mechanism is employed. Furthermore, an archive of older efficient solutions is used. The DEDMNA algorithm is applied to three real-life engineering problems and 13 constrained problems. Seven well-known state-of-the-art DE algorithms are used to compare the efficiency of DEDMNA. The performance of DEDMNA and other algorithms are comparatively assessed using statistical methods. The results obtained show that DEDMNA is a very comparable optimiser compared to the best performing DE variants. The simple idea of measuring the distance of the mutant solutions increases the performance of DE significantly.
Klasifikace
Druh
J<sub>imp</sub> - Článek v periodiku v databázi Web of Science
CEP obor
—
OECD FORD obor
10102 - Applied mathematics
Návaznosti výsledku
Projekt
—
Návaznosti
S - Specificky vyzkum na vysokych skolach
Ostatní
Rok uplatnění
2021
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název periodika
Mathematics
ISSN
2227-7390
e-ISSN
—
Svazek periodika
9
Číslo periodika v rámci svazku
16
Stát vydavatele periodika
CH - Švýcarská konfederace
Počet stran výsledku
14
Strana od-do
1909
Kód UT WoS článku
000690633900001
EID výsledku v databázi Scopus
2-s2.0-85112538248