Vše

Co hledáte?

Vše
Projekty
Výsledky výzkumu
Subjekty

Rychlé hledání

  • Projekty podpořené TA ČR
  • Významné projekty
  • Projekty s nejvyšší státní podporou
  • Aktuálně běžící projekty

Chytré vyhledávání

  • Takto najdu konkrétní +slovo
  • Takto z výsledků -slovo zcela vynechám
  • “Takto můžu najít celou frázi”

Data Mining of Job Requirements in Online Job Advertisements Using Machine Learning and SDCA Logistic Regression

Identifikátory výsledku

  • Kód výsledku v IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F61988987%3A17310%2F21%3AA2202BH0" target="_blank" >RIV/61988987:17310/21:A2202BH0 - isvavai.cz</a>

  • Výsledek na webu

    <a href="https://www.mdpi.com/2227-7390/9/19/2475" target="_blank" >https://www.mdpi.com/2227-7390/9/19/2475</a>

  • DOI - Digital Object Identifier

    <a href="http://dx.doi.org/10.3390/math9192475" target="_blank" >10.3390/math9192475</a>

Alternativní jazyky

  • Jazyk výsledku

    angličtina

  • Název v původním jazyce

    Data Mining of Job Requirements in Online Job Advertisements Using Machine Learning and SDCA Logistic Regression

  • Popis výsledku v původním jazyce

    There are currently many job portals offering job positions in the form of job advertisements. In this article, we are proposing an approach to mine data from job advertisements on job portals. Mainly, it would concern job requirements mining from individual job advertisements. Our proposed system consists of a data mining module, a machine learning module, and a postprocessing module. The machine learning module is based on the SDCA logistic regression. The postprocessing module includes several approaches to increase the success rate of the job requirements identification. The proposed system was verified on 20 most searched IT job positions from the selected job portal. In total, 9971 job advertisements were analyzed. Our system’s verification is finding all job requirements in 80% of analyzed advertisements. The detected job requirements were also compared with the Open Skills database. Based on this database and the extension of IT job positions with other typical job skills, we created a list of the most frequent job skills in selected IT job positions. The main contribution is the development of a universal system to detect job requirements in job advertisements.The proposed approach can be used not only for IT positions, but also for various job positions. The presented data mining module can also be used for various job portals.

  • Název v anglickém jazyce

    Data Mining of Job Requirements in Online Job Advertisements Using Machine Learning and SDCA Logistic Regression

  • Popis výsledku anglicky

    There are currently many job portals offering job positions in the form of job advertisements. In this article, we are proposing an approach to mine data from job advertisements on job portals. Mainly, it would concern job requirements mining from individual job advertisements. Our proposed system consists of a data mining module, a machine learning module, and a postprocessing module. The machine learning module is based on the SDCA logistic regression. The postprocessing module includes several approaches to increase the success rate of the job requirements identification. The proposed system was verified on 20 most searched IT job positions from the selected job portal. In total, 9971 job advertisements were analyzed. Our system’s verification is finding all job requirements in 80% of analyzed advertisements. The detected job requirements were also compared with the Open Skills database. Based on this database and the extension of IT job positions with other typical job skills, we created a list of the most frequent job skills in selected IT job positions. The main contribution is the development of a universal system to detect job requirements in job advertisements.The proposed approach can be used not only for IT positions, but also for various job positions. The presented data mining module can also be used for various job portals.

Klasifikace

  • Druh

    J<sub>imp</sub> - Článek v periodiku v databázi Web of Science

  • CEP obor

  • OECD FORD obor

    10201 - Computer sciences, information science, bioinformathics (hardware development to be 2.2, social aspect to be 5.8)

Návaznosti výsledku

  • Projekt

  • Návaznosti

    S - Specificky vyzkum na vysokych skolach

Ostatní

  • Rok uplatnění

    2021

  • Kód důvěrnosti údajů

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Údaje specifické pro druh výsledku

  • Název periodika

    Mathematics

  • ISSN

    2227-7390

  • e-ISSN

  • Svazek periodika

    9

  • Číslo periodika v rámci svazku

    19

  • Stát vydavatele periodika

    CH - Švýcarská konfederace

  • Počet stran výsledku

    32

  • Strana od-do

  • Kód UT WoS článku

    000707511500001

  • EID výsledku v databázi Scopus

    2-s2.0-85116331370