Vše

Co hledáte?

Vše
Projekty
Výsledky výzkumu
Subjekty

Rychlé hledání

  • Projekty podpořené TA ČR
  • Významné projekty
  • Projekty s nejvyšší státní podporou
  • Aktuálně běžící projekty

Chytré vyhledávání

  • Takto najdu konkrétní +slovo
  • Takto z výsledků -slovo zcela vynechám
  • “Takto můžu najít celou frázi”

Laplace Operator in Connection to Underlying Space Structure

Identifikátory výsledku

  • Kód výsledku v IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F61988987%3A17310%2F22%3AA2302FWX" target="_blank" >RIV/61988987:17310/22:A2302FWX - isvavai.cz</a>

  • Výsledek na webu

    <a href="https://link.springer.com/chapter/10.1007/978-3-031-08974-9_31" target="_blank" >https://link.springer.com/chapter/10.1007/978-3-031-08974-9_31</a>

  • DOI - Digital Object Identifier

    <a href="http://dx.doi.org/10.1007/978-3-031-08974-9_31" target="_blank" >10.1007/978-3-031-08974-9_31</a>

Alternativní jazyky

  • Jazyk výsledku

    angličtina

  • Název v původním jazyce

    Laplace Operator in Connection to Underlying Space Structure

  • Popis výsledku v původním jazyce

    Laplace operator is a diverse concept throughout natural sciences. It appears in many research areas and every such area defines it accordingly based on underlying domain and plans on follow-up applications. This operator attracts a lot of attention e.g. in signal and image processing applications. However, signals, in general, can be defined not only on Euclidean domains such as regular grids (in case of images). There are cases when underlying space is considered to be e.g. a non-regular graph or even a manifold, but the Laplace operator is still closely bound to the space structure. Therefore, we investigated this operator from point of view of spaces, where distance may not be explicitly defined and thus is being replaced by more general, so-called, proximity. Our goal was to find such a representation, that would be simple for computations but at the same time applicable to more general domains, possibly to spaces without a notion of a classic distance. In this article, we will mention some of the various ways in which this operator can be introduced in relation to the corresponding space. Also, we will introduce the formula for the Laplace operator in the space whose structure is determined by a fuzzy partition. And we will investigate the properties of this kind of representation in parallelisms to standard well-known versions.

  • Název v anglickém jazyce

    Laplace Operator in Connection to Underlying Space Structure

  • Popis výsledku anglicky

    Laplace operator is a diverse concept throughout natural sciences. It appears in many research areas and every such area defines it accordingly based on underlying domain and plans on follow-up applications. This operator attracts a lot of attention e.g. in signal and image processing applications. However, signals, in general, can be defined not only on Euclidean domains such as regular grids (in case of images). There are cases when underlying space is considered to be e.g. a non-regular graph or even a manifold, but the Laplace operator is still closely bound to the space structure. Therefore, we investigated this operator from point of view of spaces, where distance may not be explicitly defined and thus is being replaced by more general, so-called, proximity. Our goal was to find such a representation, that would be simple for computations but at the same time applicable to more general domains, possibly to spaces without a notion of a classic distance. In this article, we will mention some of the various ways in which this operator can be introduced in relation to the corresponding space. Also, we will introduce the formula for the Laplace operator in the space whose structure is determined by a fuzzy partition. And we will investigate the properties of this kind of representation in parallelisms to standard well-known versions.

Klasifikace

  • Druh

    D - Stať ve sborníku

  • CEP obor

  • OECD FORD obor

    10101 - Pure mathematics

Návaznosti výsledku

  • Projekt

  • Návaznosti

    S - Specificky vyzkum na vysokych skolach

Ostatní

  • Rok uplatnění

    2022

  • Kód důvěrnosti údajů

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Údaje specifické pro druh výsledku

  • Název statě ve sborníku

    Information Processing and Management of Uncertainty in Knowledge-Based Systems

  • ISBN

    978-3-031-08973-2

  • ISSN

  • e-ISSN

  • Počet stran výsledku

    11

  • Strana od-do

    394-404

  • Název nakladatele

    Springer

  • Místo vydání

    Milano

  • Místo konání akce

    Milano

  • Datum konání akce

    11. 7. 2022

  • Typ akce podle státní příslušnosti

    WRD - Celosvětová akce

  • Kód UT WoS článku