Laplace Operator in Connection to Underlying Space Structure
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F61988987%3A17310%2F22%3AA2302FWX" target="_blank" >RIV/61988987:17310/22:A2302FWX - isvavai.cz</a>
Výsledek na webu
<a href="https://link.springer.com/chapter/10.1007/978-3-031-08974-9_31" target="_blank" >https://link.springer.com/chapter/10.1007/978-3-031-08974-9_31</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1007/978-3-031-08974-9_31" target="_blank" >10.1007/978-3-031-08974-9_31</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Laplace Operator in Connection to Underlying Space Structure
Popis výsledku v původním jazyce
Laplace operator is a diverse concept throughout natural sciences. It appears in many research areas and every such area defines it accordingly based on underlying domain and plans on follow-up applications. This operator attracts a lot of attention e.g. in signal and image processing applications. However, signals, in general, can be defined not only on Euclidean domains such as regular grids (in case of images). There are cases when underlying space is considered to be e.g. a non-regular graph or even a manifold, but the Laplace operator is still closely bound to the space structure. Therefore, we investigated this operator from point of view of spaces, where distance may not be explicitly defined and thus is being replaced by more general, so-called, proximity. Our goal was to find such a representation, that would be simple for computations but at the same time applicable to more general domains, possibly to spaces without a notion of a classic distance. In this article, we will mention some of the various ways in which this operator can be introduced in relation to the corresponding space. Also, we will introduce the formula for the Laplace operator in the space whose structure is determined by a fuzzy partition. And we will investigate the properties of this kind of representation in parallelisms to standard well-known versions.
Název v anglickém jazyce
Laplace Operator in Connection to Underlying Space Structure
Popis výsledku anglicky
Laplace operator is a diverse concept throughout natural sciences. It appears in many research areas and every such area defines it accordingly based on underlying domain and plans on follow-up applications. This operator attracts a lot of attention e.g. in signal and image processing applications. However, signals, in general, can be defined not only on Euclidean domains such as regular grids (in case of images). There are cases when underlying space is considered to be e.g. a non-regular graph or even a manifold, but the Laplace operator is still closely bound to the space structure. Therefore, we investigated this operator from point of view of spaces, where distance may not be explicitly defined and thus is being replaced by more general, so-called, proximity. Our goal was to find such a representation, that would be simple for computations but at the same time applicable to more general domains, possibly to spaces without a notion of a classic distance. In this article, we will mention some of the various ways in which this operator can be introduced in relation to the corresponding space. Also, we will introduce the formula for the Laplace operator in the space whose structure is determined by a fuzzy partition. And we will investigate the properties of this kind of representation in parallelisms to standard well-known versions.
Klasifikace
Druh
D - Stať ve sborníku
CEP obor
—
OECD FORD obor
10101 - Pure mathematics
Návaznosti výsledku
Projekt
—
Návaznosti
S - Specificky vyzkum na vysokych skolach
Ostatní
Rok uplatnění
2022
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název statě ve sborníku
Information Processing and Management of Uncertainty in Knowledge-Based Systems
ISBN
978-3-031-08973-2
ISSN
—
e-ISSN
—
Počet stran výsledku
11
Strana od-do
394-404
Název nakladatele
Springer
Místo vydání
Milano
Místo konání akce
Milano
Datum konání akce
11. 7. 2022
Typ akce podle státní příslušnosti
WRD - Celosvětová akce
Kód UT WoS článku
—