Vše

Co hledáte?

Vše
Projekty
Výsledky výzkumu
Subjekty

Rychlé hledání

  • Projekty podpořené TA ČR
  • Významné projekty
  • Projekty s nejvyšší státní podporou
  • Aktuálně běžící projekty

Chytré vyhledávání

  • Takto najdu konkrétní +slovo
  • Takto z výsledků -slovo zcela vynechám
  • “Takto můžu najít celou frázi”

Deep learning reveals one of Earth's largest landslide terrain in Patagonia

Identifikátory výsledku

  • Kód výsledku v IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F61988987%3A17310%2F22%3AA2302J1Z" target="_blank" >RIV/61988987:17310/22:A2302J1Z - isvavai.cz</a>

  • Výsledek na webu

    <a href="https://www.sciencedirect.com/science/article/pii/S0012821X22002783?via%3Dihub" target="_blank" >https://www.sciencedirect.com/science/article/pii/S0012821X22002783?via%3Dihub</a>

  • DOI - Digital Object Identifier

    <a href="http://dx.doi.org/10.1016/j.epsl.2022.117642" target="_blank" >10.1016/j.epsl.2022.117642</a>

Alternativní jazyky

  • Jazyk výsledku

    angličtina

  • Název v původním jazyce

    Deep learning reveals one of Earth's largest landslide terrain in Patagonia

  • Popis výsledku v původním jazyce

    Hundreds of basaltic plateau margins east of the Patagonian Cordillera are undermined by numerous giant slope failures. However, the overall extent of this widespread type of plateau collapse remains unknown and incompletely captured in local maps. To detect giant slope failures consistently throughout the region, we train two convolutional neural networks (CNNs), AlexNet and U-Net, with Sentinel-2 optical data and TanDEM-X topographic data on elevation, surface roughness, and curvature. We validated the performance of these CNNs with independent testing data and found that AlexNet performed better when learned on topographic data, and UNet when learned on optical data. AlexNet predicts a total landslide area of 12,000 km2 in a study area of 450,000 km2, and thus one of Earth's largest clusters of giant landslides. These are mostly lateral spreads and rotational failures in effusive rocks, particularly eroding the margins of basaltic plateaus; some giant landslides occurred along shores of former glacial lakes, but are least prevalent in Quaternary sedimentary rocks. Given the roughly comparable topographic, climatic, and seismic conditions in our study area, we infer that basalts topping weak sedimentary rocks may have elevated potential for large-scale slope failure. Judging from the many newly detected and previously unknown landslides, we conclude that CNNs can be a valuable tool to detect large-scale slope instability at the regional scale. However, visual inspection is still necessary to validate results and correctly outline individual landslide source and deposit areas.

  • Název v anglickém jazyce

    Deep learning reveals one of Earth's largest landslide terrain in Patagonia

  • Popis výsledku anglicky

    Hundreds of basaltic plateau margins east of the Patagonian Cordillera are undermined by numerous giant slope failures. However, the overall extent of this widespread type of plateau collapse remains unknown and incompletely captured in local maps. To detect giant slope failures consistently throughout the region, we train two convolutional neural networks (CNNs), AlexNet and U-Net, with Sentinel-2 optical data and TanDEM-X topographic data on elevation, surface roughness, and curvature. We validated the performance of these CNNs with independent testing data and found that AlexNet performed better when learned on topographic data, and UNet when learned on optical data. AlexNet predicts a total landslide area of 12,000 km2 in a study area of 450,000 km2, and thus one of Earth's largest clusters of giant landslides. These are mostly lateral spreads and rotational failures in effusive rocks, particularly eroding the margins of basaltic plateaus; some giant landslides occurred along shores of former glacial lakes, but are least prevalent in Quaternary sedimentary rocks. Given the roughly comparable topographic, climatic, and seismic conditions in our study area, we infer that basalts topping weak sedimentary rocks may have elevated potential for large-scale slope failure. Judging from the many newly detected and previously unknown landslides, we conclude that CNNs can be a valuable tool to detect large-scale slope instability at the regional scale. However, visual inspection is still necessary to validate results and correctly outline individual landslide source and deposit areas.

Klasifikace

  • Druh

    J<sub>imp</sub> - Článek v periodiku v databázi Web of Science

  • CEP obor

  • OECD FORD obor

    10508 - Physical geography

Návaznosti výsledku

  • Projekt

    <a href="/cs/project/GA19-16013S" target="_blank" >GA19-16013S: Obří sesuvy na předpolí ledovců: chybějící část příběhu vývoje Patagonského ledovcového štítu a přilehlých ledovcových jezer</a><br>

  • Návaznosti

    P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)

Ostatní

  • Rok uplatnění

    2022

  • Kód důvěrnosti údajů

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Údaje specifické pro druh výsledku

  • Název periodika

    Earth and Planetary Science Letters

  • ISSN

    0012821X

  • e-ISSN

  • Svazek periodika

  • Číslo periodika v rámci svazku

    September

  • Stát vydavatele periodika

    NL - Nizozemsko

  • Počet stran výsledku

    13

  • Strana od-do

  • Kód UT WoS článku

    000812165000002

  • EID výsledku v databázi Scopus

    2-s2.0-85131463867