Deep learning reveals one of Earth's largest landslide terrain in Patagonia
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F61988987%3A17310%2F22%3AN2302J1Z" target="_blank" >RIV/61988987:17310/22:N2302J1Z - isvavai.cz</a>
Výsledek na webu
<a href="https://www.sciencedirect.com/science/article/pii/S0012821X22002783?via%3Dihub" target="_blank" >https://www.sciencedirect.com/science/article/pii/S0012821X22002783?via%3Dihub</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1016/j.epsl.2022.117642" target="_blank" >10.1016/j.epsl.2022.117642</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Deep learning reveals one of Earth's largest landslide terrain in Patagonia
Popis výsledku v původním jazyce
Hundreds of basaltic plateau margins east of the Patagonian Cordillera are undermined by numerous giant slope failures. However, the overall extent of this widespread type of plateau collapse remains unknown and incompletely captured in local maps. To detect giant slope failures consistently throughout the region, we train two convolutional neural networks (CNNs), AlexNet and U-Net, with Sentinel-2 optical data and TanDEM-X topographic data on elevation, surface roughness, and curvature. We validated the performance of these CNNs with independent testing data and found that AlexNet performed better when learned on topographic data, and UNet when learned on optical data. AlexNet predicts a total landslide area of 12,000 km2 in a study area of 450,000 km2, and thus one of Earth's largest clusters of giant landslides. These are mostly lateral spreads and rotational failures in effusive rocks, particularly eroding the margins of basaltic plateaus; some giant landslides occurred along shores of former glacial lakes, but are least prevalent in Quaternary sedimentary rocks. Given the roughly comparable topographic, climatic, and seismic conditions in our study area, we infer that basalts topping weak sedimentary rocks may have elevated potential for large-scale slope failure. Judging from the many newly detected and previously unknown landslides, we conclude that CNNs can be a valuable tool to detect large-scale slope instability at the regional scale. However, visual inspection is still necessary to validate results and correctly outline individual landslide source and deposit areas.
Název v anglickém jazyce
Deep learning reveals one of Earth's largest landslide terrain in Patagonia
Popis výsledku anglicky
Hundreds of basaltic plateau margins east of the Patagonian Cordillera are undermined by numerous giant slope failures. However, the overall extent of this widespread type of plateau collapse remains unknown and incompletely captured in local maps. To detect giant slope failures consistently throughout the region, we train two convolutional neural networks (CNNs), AlexNet and U-Net, with Sentinel-2 optical data and TanDEM-X topographic data on elevation, surface roughness, and curvature. We validated the performance of these CNNs with independent testing data and found that AlexNet performed better when learned on topographic data, and UNet when learned on optical data. AlexNet predicts a total landslide area of 12,000 km2 in a study area of 450,000 km2, and thus one of Earth's largest clusters of giant landslides. These are mostly lateral spreads and rotational failures in effusive rocks, particularly eroding the margins of basaltic plateaus; some giant landslides occurred along shores of former glacial lakes, but are least prevalent in Quaternary sedimentary rocks. Given the roughly comparable topographic, climatic, and seismic conditions in our study area, we infer that basalts topping weak sedimentary rocks may have elevated potential for large-scale slope failure. Judging from the many newly detected and previously unknown landslides, we conclude that CNNs can be a valuable tool to detect large-scale slope instability at the regional scale. However, visual inspection is still necessary to validate results and correctly outline individual landslide source and deposit areas.
Klasifikace
Druh
J<sub>imp</sub> - Článek v periodiku v databázi Web of Science
CEP obor
—
OECD FORD obor
10508 - Physical geography
Návaznosti výsledku
Projekt
<a href="/cs/project/GA19-16013S" target="_blank" >GA19-16013S: Obří sesuvy na předpolí ledovců: chybějící část příběhu vývoje Patagonského ledovcového štítu a přilehlých ledovcových jezer</a><br>
Návaznosti
P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)
Ostatní
Rok uplatnění
2022
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název periodika
Earth and Planetary Science Letters
ISSN
0012821X
e-ISSN
—
Svazek periodika
—
Číslo periodika v rámci svazku
September
Stát vydavatele periodika
NL - Nizozemsko
Počet stran výsledku
13
Strana od-do
—
Kód UT WoS článku
000812165000002
EID výsledku v databázi Scopus
2-s2.0-85131463867