The Influence of Genetic Algorithms on Learning Possibilities of Artificial Neural Networks
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F61988987%3A17310%2F22%3AN2302H1D" target="_blank" >RIV/61988987:17310/22:N2302H1D - isvavai.cz</a>
Nalezeny alternativní kódy
RIV/61988987:17310/22:A2302H1D
Výsledek na webu
<a href="https://www.mdpi.com/2073-431X/11/5/70" target="_blank" >https://www.mdpi.com/2073-431X/11/5/70</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.3390/computers11050070" target="_blank" >10.3390/computers11050070</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
The Influence of Genetic Algorithms on Learning Possibilities of Artificial Neural Networks
Popis výsledku v původním jazyce
The presented research study focuses on demonstrating the learning ability of a neural network using a genetic algorithm and finding the most suitable neural network topology for solving a demonstration problem. The network topology is significantly dependent on the level of generalization. More robust topology of a neural network is usually more suitable for particular details in the training set and it loses the ability to abstract general information. Therefore, we often design the network topology by taking into the account the required generalization, rather than the aspect of theoretical calculations. The next part of the article presents research whether a modification of the parameters of the genetic algorithm can achieve optimization and acceleration of the neural network learning process. The function of the neural network and its learning by using the genetic algorithm is demonstrated in a program for solving a computer game. The research focuses mainly on the assessment of the influence of changes in neural networks’ topology and changes in parameters in genetic algorithm on the achieved results and speed of neural network training. The achieved results are statistically presented and compared depending on the network topology and changes in the learning algorithm.
Název v anglickém jazyce
The Influence of Genetic Algorithms on Learning Possibilities of Artificial Neural Networks
Popis výsledku anglicky
The presented research study focuses on demonstrating the learning ability of a neural network using a genetic algorithm and finding the most suitable neural network topology for solving a demonstration problem. The network topology is significantly dependent on the level of generalization. More robust topology of a neural network is usually more suitable for particular details in the training set and it loses the ability to abstract general information. Therefore, we often design the network topology by taking into the account the required generalization, rather than the aspect of theoretical calculations. The next part of the article presents research whether a modification of the parameters of the genetic algorithm can achieve optimization and acceleration of the neural network learning process. The function of the neural network and its learning by using the genetic algorithm is demonstrated in a program for solving a computer game. The research focuses mainly on the assessment of the influence of changes in neural networks’ topology and changes in parameters in genetic algorithm on the achieved results and speed of neural network training. The achieved results are statistically presented and compared depending on the network topology and changes in the learning algorithm.
Klasifikace
Druh
J<sub>SC</sub> - Článek v periodiku v databázi SCOPUS
CEP obor
—
OECD FORD obor
10201 - Computer sciences, information science, bioinformathics (hardware development to be 2.2, social aspect to be 5.8)
Návaznosti výsledku
Projekt
<a href="/cs/project/TL02000313" target="_blank" >TL02000313: Chytrý neuro-rehabilitační systém pro pacienty se získaným poškozením mozku v časných stádiích léčby</a><br>
Návaznosti
P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)<br>S - Specificky vyzkum na vysokych skolach
Ostatní
Rok uplatnění
2022
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název periodika
COMPUTERS
ISSN
2073-431X
e-ISSN
—
Svazek periodika
—
Číslo periodika v rámci svazku
5
Stát vydavatele periodika
CH - Švýcarská konfederace
Počet stran výsledku
28
Strana od-do
701-728
Kód UT WoS článku
000802477800001
EID výsledku v databázi Scopus
2-s2.0-85129966490