Intelligence in Finance and Economics for Predicting High-Frequency Data
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F61989100%3A27510%2F23%3A10251545" target="_blank" >RIV/61989100:27510/23:10251545 - isvavai.cz</a>
Výsledek na webu
<a href="https://doi.org/10.3390/math11020454" target="_blank" >https://doi.org/10.3390/math11020454</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.3390/math11020454" target="_blank" >10.3390/math11020454</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Intelligence in Finance and Economics for Predicting High-Frequency Data
Popis výsledku v původním jazyce
Forecasting exchange rates is a complex problem that has benefitted from recent advances and research in machine learning. The main goal of this study is to design and implement a method to improve the learning performance of artificial neural networks with large volumes of data using population-based metaheuristics. The micro-genetic training algorithm is thoroughly analyzed using profiling tools to find bottlenecks. We compare the use of a micro-genetic algorithm to predict changes in currency exchange rates on a data set containing more than 500,000 values. To find the best parameters of neural networks, we propose an improved micro-genetic training algorithm by dividing the training data into mini batches. In this case, the improved micro-genetic algorithm proved to be much faster compared to the standard genetic algorithm, while achieving the same prediction accuracy. This allows for the use of this algorithm for just-in-time predictions of high frequency data. Here, neural network models are first created and validated on an existing data set. Then, the new data values can be added to neural network models and retrained in a short time. (C) 2023 by the authors.
Název v anglickém jazyce
Intelligence in Finance and Economics for Predicting High-Frequency Data
Popis výsledku anglicky
Forecasting exchange rates is a complex problem that has benefitted from recent advances and research in machine learning. The main goal of this study is to design and implement a method to improve the learning performance of artificial neural networks with large volumes of data using population-based metaheuristics. The micro-genetic training algorithm is thoroughly analyzed using profiling tools to find bottlenecks. We compare the use of a micro-genetic algorithm to predict changes in currency exchange rates on a data set containing more than 500,000 values. To find the best parameters of neural networks, we propose an improved micro-genetic training algorithm by dividing the training data into mini batches. In this case, the improved micro-genetic algorithm proved to be much faster compared to the standard genetic algorithm, while achieving the same prediction accuracy. This allows for the use of this algorithm for just-in-time predictions of high frequency data. Here, neural network models are first created and validated on an existing data set. Then, the new data values can be added to neural network models and retrained in a short time. (C) 2023 by the authors.
Klasifikace
Druh
J<sub>imp</sub> - Článek v periodiku v databázi Web of Science
CEP obor
—
OECD FORD obor
10100 - Mathematics
Návaznosti výsledku
Projekt
—
Návaznosti
S - Specificky vyzkum na vysokych skolach
Ostatní
Rok uplatnění
2023
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název periodika
Mathematics
ISSN
2227-7390
e-ISSN
2227-7390
Svazek periodika
11
Číslo periodika v rámci svazku
2
Stát vydavatele periodika
CH - Švýcarská konfederace
Počet stran výsledku
15
Strana od-do
454
Kód UT WoS článku
000927070300001
EID výsledku v databázi Scopus
2-s2.0-85146809839