Stock value and currency exchange rate prediction using an artificial neural network trained by a genetic algorithm
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F61989100%3A27510%2F19%3A10242772" target="_blank" >RIV/61989100:27510/19:10242772 - isvavai.cz</a>
Výsledek na webu
<a href="https://www.ekf.vsb.cz/smsis/en" target="_blank" >https://www.ekf.vsb.cz/smsis/en</a>
DOI - Digital Object Identifier
—
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Stock value and currency exchange rate prediction using an artificial neural network trained by a genetic algorithm
Popis výsledku v původním jazyce
Prediction of a stock value or a currency exchange rate is a complex problem which has benefited from recent advancements and research in machine learning. Very popular model for the predictions are deep neural networks. This paper discusses two training algorithms for the feedforward neural networks the backpropagation algorithm and a genetic algorithm. Although the backpropagation algorithm is a reliable way to train a neural network, it can be very demanding on computational resources for lager datasets which are common in some types of trading. Heuristics like the genetic algorithms can help to lower the demands of the training process. The discussed genetic algorithm is an implementation of a classical genetic algorithm with Rank selection of parents for crossover and genes represented as a real number. The accuracy of predictions made by the network trained using this algorithm is then compared to the network trained by backpropagation. (C) 2019 VSB-Technical University of Ostrava. All rights reserved.
Název v anglickém jazyce
Stock value and currency exchange rate prediction using an artificial neural network trained by a genetic algorithm
Popis výsledku anglicky
Prediction of a stock value or a currency exchange rate is a complex problem which has benefited from recent advancements and research in machine learning. Very popular model for the predictions are deep neural networks. This paper discusses two training algorithms for the feedforward neural networks the backpropagation algorithm and a genetic algorithm. Although the backpropagation algorithm is a reliable way to train a neural network, it can be very demanding on computational resources for lager datasets which are common in some types of trading. Heuristics like the genetic algorithms can help to lower the demands of the training process. The discussed genetic algorithm is an implementation of a classical genetic algorithm with Rank selection of parents for crossover and genes represented as a real number. The accuracy of predictions made by the network trained using this algorithm is then compared to the network trained by backpropagation. (C) 2019 VSB-Technical University of Ostrava. All rights reserved.
Klasifikace
Druh
D - Stať ve sborníku
CEP obor
—
OECD FORD obor
10200 - Computer and information sciences
Návaznosti výsledku
Projekt
—
Návaznosti
S - Specificky vyzkum na vysokych skolach
Ostatní
Rok uplatnění
2019
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název statě ve sborníku
Proceedings of the 13th International Conference on Strategic Management and its Support by Information Systems: May 21th-22th, 2019, Ostrava, Czech Republic
ISBN
978-80-248-4305-6
ISSN
2570-5776
e-ISSN
—
Počet stran výsledku
10
Strana od-do
348-357
Název nakladatele
VŠB - Technical University of Ostrava
Místo vydání
Ostrava
Místo konání akce
Ostrava
Datum konání akce
21. 5. 2019
Typ akce podle státní příslušnosti
WRD - Celosvětová akce
Kód UT WoS článku
—