Time series analysis and data prediction of large databases: An application to electricity demand prediction
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F47813059%3A19240%2F14%3A%230005349" target="_blank" >RIV/47813059:19240/14:#0005349 - isvavai.cz</a>
Výsledek na webu
—
DOI - Digital Object Identifier
—
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Time series analysis and data prediction of large databases: An application to electricity demand prediction
Popis výsledku v původním jazyce
We evaluate statistical and machine learning methods for half-hourly 1-step-ahead electricity demand prediction using Australian electricity data. We show that the machine learning methods that use autocorrelation feature selection and BackPropagation Neural Networks, Linear Regression as prediction algorithms outperform the statistical methods Exponential Smoothing and also a number of baselines. We analyze the effect of day time on the prediction error and show that there are time-intervals associatedwith higher and lower errors and that the prediction methods also differ in their accuracy during the different time intervals. This analysis provides the foundation for construction a hybrid prediction model that achieved lower prediction error. We also show that an RBF neural network trained by genetic algorithm can achieved better prediction results than classic one. The aspect of increased transparency of networks through genetic evolution development features and granular computati
Název v anglickém jazyce
Time series analysis and data prediction of large databases: An application to electricity demand prediction
Popis výsledku anglicky
We evaluate statistical and machine learning methods for half-hourly 1-step-ahead electricity demand prediction using Australian electricity data. We show that the machine learning methods that use autocorrelation feature selection and BackPropagation Neural Networks, Linear Regression as prediction algorithms outperform the statistical methods Exponential Smoothing and also a number of baselines. We analyze the effect of day time on the prediction error and show that there are time-intervals associatedwith higher and lower errors and that the prediction methods also differ in their accuracy during the different time intervals. This analysis provides the foundation for construction a hybrid prediction model that achieved lower prediction error. We also show that an RBF neural network trained by genetic algorithm can achieved better prediction results than classic one. The aspect of increased transparency of networks through genetic evolution development features and granular computati
Klasifikace
Druh
J<sub>x</sub> - Nezařazeno - Článek v odborném periodiku (Jimp, Jsc a Jost)
CEP obor
IN - Informatika
OECD FORD obor
—
Návaznosti výsledku
Projekt
<a href="/cs/project/ED1.1.00%2F02.0070" target="_blank" >ED1.1.00/02.0070: Centrum excelence IT4Innovations</a><br>
Návaznosti
P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)
Ostatní
Rok uplatnění
2014
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název periodika
Advanced Material Research
ISSN
1022-6680
e-ISSN
—
Svazek periodika
—
Číslo periodika v rámci svazku
neuveden
Stát vydavatele periodika
CH - Švýcarská konfederace
Počet stran výsledku
6
Strana od-do
401-406
Kód UT WoS článku
—
EID výsledku v databázi Scopus
—