Synthesis of nanostructured gadolinium doped mixed ferrite: A novel catalyst for the mineralization of textile dyes
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F61988987%3A17310%2F23%3AA2402KV9" target="_blank" >RIV/61988987:17310/23:A2402KV9 - isvavai.cz</a>
Výsledek na webu
<a href="https://www.sciencedirect.com/science/article/pii/S0272884223005369?via%3Dihub" target="_blank" >https://www.sciencedirect.com/science/article/pii/S0272884223005369?via%3Dihub</a>
DOI - Digital Object Identifier
—
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Synthesis of nanostructured gadolinium doped mixed ferrite: A novel catalyst for the mineralization of textile dyes
Popis výsledku v původním jazyce
Herein, cobalt-nickel mixed ferrite (Co0 center dot 5Ni0 center dot 5Fe2O4, CNFO) and gadolinium doped cobalt-nickel mixed ferrite (Co0 center dot 5Ni0.5Gd0.1Fe1 center dot 9O4, G-CNFO) materials have been synthesized at the nanoscale via the microemulsion technique. The physicochemical features of the CNFO and G-CNFO materials were examined by advanced structural (PXRD and FTIR), morphological (FESEM), elemental (EDX), and optical (UV/Vis and transient photocurrent) studies. Under visible light, the catalytic activity of CNFO and G-CNFO materials was compared using Congo red and Aniline blue dyes as model textile pollutants. The G-CNFO material showed better photocatalytic activity than CNFO material, as it eliminated almost 21% more dye than CNFO material under the same experimental conditions. In order to find the optimal parameter for the experiments, the variables affecting the catalytic properties of the G-CNFO material were investigated in considerable detail. These variables included pH, catalyst dosage, dye concentration, temperature, and irradiation time. Scavenging and transient photocurrent experiments were also carried out in order to determine the key reactive oxygen species and the formation of electron-hole pairs. The G-CNFO mineralized the Congo red dye almost three times faster than its counterpart and showed a negligible loss in its catalytic activity even after five successive catalytic cycles. The combined effects of the G-CNFO material's tuned band structure, high light harvesting abilities, reduced electron-hole recombination, and nanostructured morphology resulted in its enhanced photocatalytic activity.
Název v anglickém jazyce
Synthesis of nanostructured gadolinium doped mixed ferrite: A novel catalyst for the mineralization of textile dyes
Popis výsledku anglicky
Herein, cobalt-nickel mixed ferrite (Co0 center dot 5Ni0 center dot 5Fe2O4, CNFO) and gadolinium doped cobalt-nickel mixed ferrite (Co0 center dot 5Ni0.5Gd0.1Fe1 center dot 9O4, G-CNFO) materials have been synthesized at the nanoscale via the microemulsion technique. The physicochemical features of the CNFO and G-CNFO materials were examined by advanced structural (PXRD and FTIR), morphological (FESEM), elemental (EDX), and optical (UV/Vis and transient photocurrent) studies. Under visible light, the catalytic activity of CNFO and G-CNFO materials was compared using Congo red and Aniline blue dyes as model textile pollutants. The G-CNFO material showed better photocatalytic activity than CNFO material, as it eliminated almost 21% more dye than CNFO material under the same experimental conditions. In order to find the optimal parameter for the experiments, the variables affecting the catalytic properties of the G-CNFO material were investigated in considerable detail. These variables included pH, catalyst dosage, dye concentration, temperature, and irradiation time. Scavenging and transient photocurrent experiments were also carried out in order to determine the key reactive oxygen species and the formation of electron-hole pairs. The G-CNFO mineralized the Congo red dye almost three times faster than its counterpart and showed a negligible loss in its catalytic activity even after five successive catalytic cycles. The combined effects of the G-CNFO material's tuned band structure, high light harvesting abilities, reduced electron-hole recombination, and nanostructured morphology resulted in its enhanced photocatalytic activity.
Klasifikace
Druh
J<sub>imp</sub> - Článek v periodiku v databázi Web of Science
CEP obor
—
OECD FORD obor
10400 - Chemical sciences
Návaznosti výsledku
Projekt
—
Návaznosti
I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace
Ostatní
Rok uplatnění
2023
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název periodika
CERAM INT
ISSN
0272-8842
e-ISSN
—
Svazek periodika
—
Číslo periodika v rámci svazku
15.6.2023
Stát vydavatele periodika
GB - Spojené království Velké Británie a Severního Irska
Počet stran výsledku
10
Strana od-do
19641-19651
Kód UT WoS článku
000993979800001
EID výsledku v databázi Scopus
—