Vše

Co hledáte?

Vše
Projekty
Výsledky výzkumu
Subjekty

Rychlé hledání

  • Projekty podpořené TA ČR
  • Významné projekty
  • Projekty s nejvyšší státní podporou
  • Aktuálně běžící projekty

Chytré vyhledávání

  • Takto najdu konkrétní +slovo
  • Takto z výsledků -slovo zcela vynechám
  • “Takto můžu najít celou frázi”

Facile synthesis of graphene anchored rare earth doped mixed metal ferrite nanorods: A potential candidate for azo dye mineralization

Identifikátory výsledku

  • Kód výsledku v IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F61988987%3A17310%2F24%3AA250383V" target="_blank" >RIV/61988987:17310/24:A250383V - isvavai.cz</a>

  • Výsledek na webu

    <a href="https://www.sciencedirect.com/science/article/pii/S100207212300176X?via%3Dihub" target="_blank" >https://www.sciencedirect.com/science/article/pii/S100207212300176X?via%3Dihub</a>

  • DOI - Digital Object Identifier

    <a href="http://dx.doi.org/10.1016/j.jre.2023.07.002" target="_blank" >10.1016/j.jre.2023.07.002</a>

Alternativní jazyky

  • Jazyk výsledku

    angličtina

  • Název v původním jazyce

    Facile synthesis of graphene anchored rare earth doped mixed metal ferrite nanorods: A potential candidate for azo dye mineralization

  • Popis výsledku v původním jazyce

    Bandgap tuning using rare earth metals as dopants in ferrite -based photocatalytic materials has received a lot of interest because the Fermi 4f energy of these metals generates a sub -energy state in the bandgap generated by the overlapping of Fe -3d and O -2p orbitals. Herein, dysprosium -doped cobalt -nickel mixed ferrite (D-CNFO) and its graphene-reinforced composite (D-CNFO@G) were prepared and an ideal photocatalyst material for azo dye mineralization was proposed. A cost-effective combination of wetchemical and ultrasonication methods was used to prepare the doped and composite samples. Advanced characterization methodologies were used to scrutinize the optical, compositional, structural, morphological, and photocatalytic characteristics of as -prepared materials. The X-ray diffraction analysis identi fied the spinel phase's (cubic) structure, while the electronic spectroscopy examination con firmed the prepared samples' rod -like morphology. The UV/visible absorbance spectrum shows the higher light harvesting behavior of the D-CNFO@G in the visible region. The mineralization performance of the DCNFO and D-CNFO@G composites was analyzed using Congo -red (an anionic dye), a well-known azo dye. The D-CNFO@G sample removes Congo -red dye at a rate almost 2.4% faster than the D-CNFO sample. The experiment involving trapping free radicals indicates that hydroxyl radical plays a crucial role in dye degradation. Since the D-CNFO@G catalyst is magnetic and can be isolated easily from the photocatalytic system, it shows an awkward cycle activity of more than 96% after five mineralization tests. The asprepared D-CNFO@G composite is proved as an excellent option for azo dye mineralization because of the combined impacts of rare earth doping, graphene reinforcement and nanotechnology. (c) 2023 Chinese Society of Rare Earths. Published by Elsevier B.V. All rights reserved.

  • Název v anglickém jazyce

    Facile synthesis of graphene anchored rare earth doped mixed metal ferrite nanorods: A potential candidate for azo dye mineralization

  • Popis výsledku anglicky

    Bandgap tuning using rare earth metals as dopants in ferrite -based photocatalytic materials has received a lot of interest because the Fermi 4f energy of these metals generates a sub -energy state in the bandgap generated by the overlapping of Fe -3d and O -2p orbitals. Herein, dysprosium -doped cobalt -nickel mixed ferrite (D-CNFO) and its graphene-reinforced composite (D-CNFO@G) were prepared and an ideal photocatalyst material for azo dye mineralization was proposed. A cost-effective combination of wetchemical and ultrasonication methods was used to prepare the doped and composite samples. Advanced characterization methodologies were used to scrutinize the optical, compositional, structural, morphological, and photocatalytic characteristics of as -prepared materials. The X-ray diffraction analysis identi fied the spinel phase's (cubic) structure, while the electronic spectroscopy examination con firmed the prepared samples' rod -like morphology. The UV/visible absorbance spectrum shows the higher light harvesting behavior of the D-CNFO@G in the visible region. The mineralization performance of the DCNFO and D-CNFO@G composites was analyzed using Congo -red (an anionic dye), a well-known azo dye. The D-CNFO@G sample removes Congo -red dye at a rate almost 2.4% faster than the D-CNFO sample. The experiment involving trapping free radicals indicates that hydroxyl radical plays a crucial role in dye degradation. Since the D-CNFO@G catalyst is magnetic and can be isolated easily from the photocatalytic system, it shows an awkward cycle activity of more than 96% after five mineralization tests. The asprepared D-CNFO@G composite is proved as an excellent option for azo dye mineralization because of the combined impacts of rare earth doping, graphene reinforcement and nanotechnology. (c) 2023 Chinese Society of Rare Earths. Published by Elsevier B.V. All rights reserved.

Klasifikace

  • Druh

    J<sub>imp</sub> - Článek v periodiku v databázi Web of Science

  • CEP obor

  • OECD FORD obor

    10400 - Chemical sciences

Návaznosti výsledku

  • Projekt

  • Návaznosti

    I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace

Ostatní

  • Rok uplatnění

    2024

  • Kód důvěrnosti údajů

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Údaje specifické pro druh výsledku

  • Název periodika

    Journal of Rare Earths

  • ISSN

    1002-0721

  • e-ISSN

    1002-0721

  • Svazek periodika

  • Číslo periodika v rámci svazku

    5

  • Stát vydavatele periodika

    NL - Nizozemsko

  • Počet stran výsledku

    10

  • Strana od-do

    907-916

  • Kód UT WoS článku

    001224503900002

  • EID výsledku v databázi Scopus

    2-s2.0-85187001447