Phase transformation of alpha-MnO2 to beta-MnO2 induced by Cu doping: Improved electrochemical performance for next generation supercapacitor
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F61988987%3A17310%2F23%3AA2402LEE" target="_blank" >RIV/61988987:17310/23:A2402LEE - isvavai.cz</a>
Výsledek na webu
<a href="https://www.sciencedirect.com/science/article/pii/S0921510723003227?via%3Dihub" target="_blank" >https://www.sciencedirect.com/science/article/pii/S0921510723003227?via%3Dihub</a>
DOI - Digital Object Identifier
—
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Phase transformation of alpha-MnO2 to beta-MnO2 induced by Cu doping: Improved electrochemical performance for next generation supercapacitor
Popis výsledku v původním jazyce
With the advent of wearable/portable electronics and hybrid electric vehicles, supercapacitors have gained much interest owing to their high-power density. This work deals with ultralong MnO2 nanowires reinforced with different Cu contents as a new electrode material for supercapacitors fabrication. X-ray diffraction (XRD) results showed the MnO2 phase transformation from alpha-MnO2 to beta- MnO2 induced by Cu doping. beta-MnO2 due to its highest structural stability is expected to show the excellent cyclic stability of the electrode material. Field emission scanning electron microscopy (FESEM) confirmed the ultralong nanowires morphology. Ultralong nanowires with extremely interconnected network enable efficient electron transport between them, further enhancing the electrical conductivity of the material. Redox peaks present in the CV profile revealed that the preferred charge storage follows faradic mechanism, which was further confirmed by rate law. Nanosized morphology and spongy structure of the current collector exposed the maximal electrode area in conjunction with shielding from electrode pulverization.
Název v anglickém jazyce
Phase transformation of alpha-MnO2 to beta-MnO2 induced by Cu doping: Improved electrochemical performance for next generation supercapacitor
Popis výsledku anglicky
With the advent of wearable/portable electronics and hybrid electric vehicles, supercapacitors have gained much interest owing to their high-power density. This work deals with ultralong MnO2 nanowires reinforced with different Cu contents as a new electrode material for supercapacitors fabrication. X-ray diffraction (XRD) results showed the MnO2 phase transformation from alpha-MnO2 to beta- MnO2 induced by Cu doping. beta-MnO2 due to its highest structural stability is expected to show the excellent cyclic stability of the electrode material. Field emission scanning electron microscopy (FESEM) confirmed the ultralong nanowires morphology. Ultralong nanowires with extremely interconnected network enable efficient electron transport between them, further enhancing the electrical conductivity of the material. Redox peaks present in the CV profile revealed that the preferred charge storage follows faradic mechanism, which was further confirmed by rate law. Nanosized morphology and spongy structure of the current collector exposed the maximal electrode area in conjunction with shielding from electrode pulverization.
Klasifikace
Druh
J<sub>imp</sub> - Článek v periodiku v databázi Web of Science
CEP obor
—
OECD FORD obor
10400 - Chemical sciences
Návaznosti výsledku
Projekt
—
Návaznosti
I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace
Ostatní
Rok uplatnění
2023
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název periodika
MAT SCI ENG B-SOLID
ISSN
0921-5107
e-ISSN
—
Svazek periodika
—
Číslo periodika v rámci svazku
116580
Stát vydavatele periodika
NL - Nizozemsko
Počet stran výsledku
10
Strana od-do
1-10
Kód UT WoS článku
001010005300001
EID výsledku v databázi Scopus
—