Investigating the Influence of Sodium Preintercalation on the Electrochemical Behavior of Ultrathin MnO2 Nanowires for Enhanced Supercapacitor Performance
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F61988987%3A17310%2F24%3AA25037US" target="_blank" >RIV/61988987:17310/24:A25037US - isvavai.cz</a>
Výsledek na webu
<a href="https://pubs.acs.org/doi/10.1021/acs.energyfuels.3c04027" target="_blank" >https://pubs.acs.org/doi/10.1021/acs.energyfuels.3c04027</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1021/acs.energyfuels.3c04027" target="_blank" >10.1021/acs.energyfuels.3c04027</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Investigating the Influence of Sodium Preintercalation on the Electrochemical Behavior of Ultrathin MnO2 Nanowires for Enhanced Supercapacitor Performance
Popis výsledku v původním jazyce
We have successfully synthesized bare and Na+ preintercalated MnO2 nanowires (NWs) (NaxMnO2, x = 0.05, 0.1, and 0.15) using a facile hydrothermal method. Supercapacitors are the state-of-the-art technology to overcome the global energy crisis, owing to their fast charging/discharging rates and higher power density. One-dimensional morphology (nanorods, nanowires, etc.) boosts the inherent low conductivity of transition metal oxides including MnO2 by confining charge transport only in one direction. Here, we have preintercalated Na+ ions into MnO2 nanowires (NWs) as a conductivity booster as well as a tunnel-stabilizing agent for alpha-MnO2. Morphological analysis reveals that nanowires have <50 nm diameter and their surface gets cracked with Na+ preintercalation, offering a less dead area. Linear sweep voltammetry (LSV) results revealed an increase in oxygen evolution overpotential by Na+ preintercalation, which can enable the supercapacitor to operate at an extended potential window. Na+ preintercalation and control on morphology not only increased the conductivity but also shielded the electrode pulverization against tedious charging/discharging cycles and reduced the electrolyte diffusion pathway. These features enabled Na0.10MnO2 NWs to exhibit a specific capacitance of 1061 F g(-1)@1 A g(-1) and an excellent rate capability of 85.6% at 9 A g(-1) along with 95.9% capacitance retention after 6000 charging-discharging cycles at 12 A g(-1) current density. This study showed that Na+ preintercalation in MnO2 could improve the electrochemical performance and open up new horizons to manufacture high-performance next-generation supercapacitors.
Název v anglickém jazyce
Investigating the Influence of Sodium Preintercalation on the Electrochemical Behavior of Ultrathin MnO2 Nanowires for Enhanced Supercapacitor Performance
Popis výsledku anglicky
We have successfully synthesized bare and Na+ preintercalated MnO2 nanowires (NWs) (NaxMnO2, x = 0.05, 0.1, and 0.15) using a facile hydrothermal method. Supercapacitors are the state-of-the-art technology to overcome the global energy crisis, owing to their fast charging/discharging rates and higher power density. One-dimensional morphology (nanorods, nanowires, etc.) boosts the inherent low conductivity of transition metal oxides including MnO2 by confining charge transport only in one direction. Here, we have preintercalated Na+ ions into MnO2 nanowires (NWs) as a conductivity booster as well as a tunnel-stabilizing agent for alpha-MnO2. Morphological analysis reveals that nanowires have <50 nm diameter and their surface gets cracked with Na+ preintercalation, offering a less dead area. Linear sweep voltammetry (LSV) results revealed an increase in oxygen evolution overpotential by Na+ preintercalation, which can enable the supercapacitor to operate at an extended potential window. Na+ preintercalation and control on morphology not only increased the conductivity but also shielded the electrode pulverization against tedious charging/discharging cycles and reduced the electrolyte diffusion pathway. These features enabled Na0.10MnO2 NWs to exhibit a specific capacitance of 1061 F g(-1)@1 A g(-1) and an excellent rate capability of 85.6% at 9 A g(-1) along with 95.9% capacitance retention after 6000 charging-discharging cycles at 12 A g(-1) current density. This study showed that Na+ preintercalation in MnO2 could improve the electrochemical performance and open up new horizons to manufacture high-performance next-generation supercapacitors.
Klasifikace
Druh
J<sub>imp</sub> - Článek v periodiku v databázi Web of Science
CEP obor
—
OECD FORD obor
10400 - Chemical sciences
Návaznosti výsledku
Projekt
—
Návaznosti
I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace
Ostatní
Rok uplatnění
2024
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název periodika
ENERG FUEL
ISSN
0887-0624
e-ISSN
1520-5029
Svazek periodika
—
Číslo periodika v rámci svazku
6
Stát vydavatele periodika
US - Spojené státy americké
Počet stran výsledku
15
Strana od-do
5506-5521
Kód UT WoS článku
001181858100001
EID výsledku v databázi Scopus
2-s2.0-85187372782