Diamond Alpha Differentiability of Interval-Valued Functions and Its Applicability to Interval Differential Equations on Time Scales
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F61988987%3A17310%2F24%3AA2502N65" target="_blank" >RIV/61988987:17310/24:A2502N65 - isvavai.cz</a>
Výsledek na webu
<a href="https://ijfs.usb.ac.ir/article_8073.html" target="_blank" >https://ijfs.usb.ac.ir/article_8073.html</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.22111/IJFS.2024.45184.7977" target="_blank" >10.22111/IJFS.2024.45184.7977</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Diamond Alpha Differentiability of Interval-Valued Functions and Its Applicability to Interval Differential Equations on Time Scales
Popis výsledku v původním jazyce
Modelling phenomena with interval differential equations (IDEs) is an effective way to consider the uncertainties that are unavoidable when collecting data. Similarly to the theory of ordinary differential equations, IDEs have been parallelly investigated with the interval difference equations from the beginning. These two branches can be regarded as one when unifying continuous and discrete solution domains. A conspicuous advantage when merging these areas is that the proof of several analogous properties in both theories need not be repeated. The paper provides a common and efficient tool for studying IDEs not only with continuous or discrete solution domains but also with more general ones. We propose the diamond-$alpha$ derivative for interval-valued functions (IVFs) on time scales with respect to the generalized Hukuhara difference. Differently from most of the studies on the derivatives of functions on time scales, using the language of epsilon-delta, the novel concept is naturally studied according to the limit of IVFs on time scales as in classical mathematics. A particular class of IDEs on time scales is then considered with respect to the diamond-$alpha$ derivative. Numerical problems are elaborated to illustrate the necessity and efficiency of the latter.
Název v anglickém jazyce
Diamond Alpha Differentiability of Interval-Valued Functions and Its Applicability to Interval Differential Equations on Time Scales
Popis výsledku anglicky
Modelling phenomena with interval differential equations (IDEs) is an effective way to consider the uncertainties that are unavoidable when collecting data. Similarly to the theory of ordinary differential equations, IDEs have been parallelly investigated with the interval difference equations from the beginning. These two branches can be regarded as one when unifying continuous and discrete solution domains. A conspicuous advantage when merging these areas is that the proof of several analogous properties in both theories need not be repeated. The paper provides a common and efficient tool for studying IDEs not only with continuous or discrete solution domains but also with more general ones. We propose the diamond-$alpha$ derivative for interval-valued functions (IVFs) on time scales with respect to the generalized Hukuhara difference. Differently from most of the studies on the derivatives of functions on time scales, using the language of epsilon-delta, the novel concept is naturally studied according to the limit of IVFs on time scales as in classical mathematics. A particular class of IDEs on time scales is then considered with respect to the diamond-$alpha$ derivative. Numerical problems are elaborated to illustrate the necessity and efficiency of the latter.
Klasifikace
Druh
J<sub>imp</sub> - Článek v periodiku v databázi Web of Science
CEP obor
—
OECD FORD obor
10101 - Pure mathematics
Návaznosti výsledku
Projekt
—
Návaznosti
I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace
Ostatní
Rok uplatnění
2024
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název periodika
Iranian Journal of Fuzzy Systems
ISSN
1735-0654
e-ISSN
2676-4334
Svazek periodika
—
Číslo periodika v rámci svazku
1
Stát vydavatele periodika
IR - Íránská islámská republika
Počet stran výsledku
15
Strana od-do
143-158
Kód UT WoS článku
001169497500001
EID výsledku v databázi Scopus
2-s2.0-85189501118