Vše

Co hledáte?

Vše
Projekty
Výsledky výzkumu
Subjekty

Rychlé hledání

  • Projekty podpořené TA ČR
  • Významné projekty
  • Projekty s nejvyšší státní podporou
  • Aktuálně běžící projekty

Chytré vyhledávání

  • Takto najdu konkrétní +slovo
  • Takto z výsledků -slovo zcela vynechám
  • “Takto můžu najít celou frázi”

Diamond Alpha Differentiability of Interval-Valued Functions and Its Applicability to Interval Differential Equations on Time Scales

Identifikátory výsledku

  • Kód výsledku v IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F61988987%3A17310%2F24%3AA2502N65" target="_blank" >RIV/61988987:17310/24:A2502N65 - isvavai.cz</a>

  • Výsledek na webu

    <a href="https://ijfs.usb.ac.ir/article_8073.html" target="_blank" >https://ijfs.usb.ac.ir/article_8073.html</a>

  • DOI - Digital Object Identifier

    <a href="http://dx.doi.org/10.22111/IJFS.2024.45184.7977" target="_blank" >10.22111/IJFS.2024.45184.7977</a>

Alternativní jazyky

  • Jazyk výsledku

    angličtina

  • Název v původním jazyce

    Diamond Alpha Differentiability of Interval-Valued Functions and Its Applicability to Interval Differential Equations on Time Scales

  • Popis výsledku v původním jazyce

    Modelling phenomena with interval differential equations (IDEs) is an effective way to consider the uncertainties that are unavoidable when collecting data. Similarly to the theory of ordinary differential equations, IDEs have been parallelly investigated with the interval difference equations from the beginning. These two branches can be regarded as one when unifying continuous and discrete solution domains. A conspicuous advantage when merging these areas is that the proof of several analogous properties in both theories need not be repeated. The paper provides a common and efficient tool for studying IDEs not only with continuous or discrete solution domains but also with more general ones. We propose the diamond-$alpha$ derivative for interval-valued functions (IVFs) on time scales with respect to the generalized Hukuhara difference. Differently from most of the studies on the derivatives of functions on time scales, using the language of epsilon-delta, the novel concept is naturally studied according to the limit of IVFs on time scales as in classical mathematics. A particular class of IDEs on time scales is then considered with respect to the diamond-$alpha$ derivative. Numerical problems are elaborated to illustrate the necessity and efficiency of the latter.

  • Název v anglickém jazyce

    Diamond Alpha Differentiability of Interval-Valued Functions and Its Applicability to Interval Differential Equations on Time Scales

  • Popis výsledku anglicky

    Modelling phenomena with interval differential equations (IDEs) is an effective way to consider the uncertainties that are unavoidable when collecting data. Similarly to the theory of ordinary differential equations, IDEs have been parallelly investigated with the interval difference equations from the beginning. These two branches can be regarded as one when unifying continuous and discrete solution domains. A conspicuous advantage when merging these areas is that the proof of several analogous properties in both theories need not be repeated. The paper provides a common and efficient tool for studying IDEs not only with continuous or discrete solution domains but also with more general ones. We propose the diamond-$alpha$ derivative for interval-valued functions (IVFs) on time scales with respect to the generalized Hukuhara difference. Differently from most of the studies on the derivatives of functions on time scales, using the language of epsilon-delta, the novel concept is naturally studied according to the limit of IVFs on time scales as in classical mathematics. A particular class of IDEs on time scales is then considered with respect to the diamond-$alpha$ derivative. Numerical problems are elaborated to illustrate the necessity and efficiency of the latter.

Klasifikace

  • Druh

    J<sub>imp</sub> - Článek v periodiku v databázi Web of Science

  • CEP obor

  • OECD FORD obor

    10101 - Pure mathematics

Návaznosti výsledku

  • Projekt

  • Návaznosti

    I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace

Ostatní

  • Rok uplatnění

    2024

  • Kód důvěrnosti údajů

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Údaje specifické pro druh výsledku

  • Název periodika

    Iranian Journal of Fuzzy Systems

  • ISSN

    1735-0654

  • e-ISSN

    2676-4334

  • Svazek periodika

  • Číslo periodika v rámci svazku

    1

  • Stát vydavatele periodika

    IR - Íránská islámská republika

  • Počet stran výsledku

    15

  • Strana od-do

    143-158

  • Kód UT WoS článku

    001169497500001

  • EID výsledku v databázi Scopus

    2-s2.0-85189501118