Comparison of basic recommendation methods for Czech news articles
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F61988987%3A17310%2F24%3AA25039G3" target="_blank" >RIV/61988987:17310/24:A25039G3 - isvavai.cz</a>
Výsledek na webu
<a href="https://ieeexplore.ieee.org/document/10900839" target="_blank" >https://ieeexplore.ieee.org/document/10900839</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1109/Informatics62280.2024.10900839" target="_blank" >10.1109/Informatics62280.2024.10900839</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Comparison of basic recommendation methods for Czech news articles
Popis výsledku v původním jazyce
The common contemporary recommendationmethods were assessed for recommending relevant news articlesin the Czech language. We used a TF-IDF vectorization withcosine similarity for content-based recommendations andsingular value decomposition for collaborative filtering. Thesimplest model was the popularity model based on the votecounts of other users. While the best days of expert systems seemto be gone in the era of more sophisticated neural networkmodels, we also wanted to investigate whether expert systemscan still show some benefits in providing relatively simple andexplainable methods for an ensemble of recommendations. Wealso used a Bayesian-inspired approach for the hybrid methodensemble. This work aimed to test the fundamentalrecommendation techniques on smaller datasets with non-English language using three predictors: user interactions bylike button, click-throughs (and article text itself). Despite therecent popularity of the neural network models, we found thatsimple models outperformed the models with neural networkson our dataset.
Název v anglickém jazyce
Comparison of basic recommendation methods for Czech news articles
Popis výsledku anglicky
The common contemporary recommendationmethods were assessed for recommending relevant news articlesin the Czech language. We used a TF-IDF vectorization withcosine similarity for content-based recommendations andsingular value decomposition for collaborative filtering. Thesimplest model was the popularity model based on the votecounts of other users. While the best days of expert systems seemto be gone in the era of more sophisticated neural networkmodels, we also wanted to investigate whether expert systemscan still show some benefits in providing relatively simple andexplainable methods for an ensemble of recommendations. Wealso used a Bayesian-inspired approach for the hybrid methodensemble. This work aimed to test the fundamentalrecommendation techniques on smaller datasets with non-English language using three predictors: user interactions bylike button, click-throughs (and article text itself). Despite therecent popularity of the neural network models, we found thatsimple models outperformed the models with neural networkson our dataset.
Klasifikace
Druh
D - Stať ve sborníku
CEP obor
—
OECD FORD obor
10201 - Computer sciences, information science, bioinformathics (hardware development to be 2.2, social aspect to be 5.8)
Návaznosti výsledku
Projekt
—
Návaznosti
S - Specificky vyzkum na vysokych skolach
Ostatní
Rok uplatnění
2024
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název statě ve sborníku
2024 IEEE 17th International Scientific Conference on Informatics
ISBN
979-8-3503-8768-1
ISSN
—
e-ISSN
—
Počet stran výsledku
7
Strana od-do
244-250
Název nakladatele
IEEE Institute of Electrical and Electronics Engineers
Místo vydání
New Jersey
Místo konání akce
Poprad
Datum konání akce
13. 11. 2024
Typ akce podle státní příslušnosti
EUR - Evropská akce
Kód UT WoS článku
—