Vše

Co hledáte?

Vše
Projekty
Výsledky výzkumu
Subjekty

Rychlé hledání

  • Projekty podpořené TA ČR
  • Významné projekty
  • Projekty s nejvyšší státní podporou
  • Aktuálně běžící projekty

Chytré vyhledávání

  • Takto najdu konkrétní +slovo
  • Takto z výsledků -slovo zcela vynechám
  • “Takto můžu najít celou frázi”

Interpolativity of at-least and at-most models of monotone single-input/single-output fuzzy rule bases

Identifikátory výsledku

  • Kód výsledku v IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F61988987%3A17610%2F13%3AA1300ZNZ" target="_blank" >RIV/61988987:17610/13:A1300ZNZ - isvavai.cz</a>

  • Výsledek na webu

  • DOI - Digital Object Identifier

Alternativní jazyky

  • Jazyk výsledku

    angličtina

  • Název v původním jazyce

    Interpolativity of at-least and at-most models of monotone single-input/single-output fuzzy rule bases

  • Popis výsledku v původním jazyce

    Interpolativity is one of the most important properties of a fuzzy inference system. It is well known that normal antecedent fuzzy sets forming a Ruspini partition constitute a practical setting ensuring interpolativity. In case of a fuzzy rule base expressing a monotone relationship, another desirable property is the monotonicity of the resulting function (after defuzzification). Unfortunately, this goal may often only be reached through the application of the at-least and/or at-most modifiers to the antecedent and consequent fuzzy sets. However, this approach does not seem compatible with the practical setting of a Ruspini partition. This paper shows that the situation is less conflicting than it seems, and that interpolativity can still be guaranteed, in the same practical setting, and, interestingly, from two different modeling points of view. This paper addresses the case of single-input single-output fuzzy rules.

  • Název v anglickém jazyce

    Interpolativity of at-least and at-most models of monotone single-input/single-output fuzzy rule bases

  • Popis výsledku anglicky

    Interpolativity is one of the most important properties of a fuzzy inference system. It is well known that normal antecedent fuzzy sets forming a Ruspini partition constitute a practical setting ensuring interpolativity. In case of a fuzzy rule base expressing a monotone relationship, another desirable property is the monotonicity of the resulting function (after defuzzification). Unfortunately, this goal may often only be reached through the application of the at-least and/or at-most modifiers to the antecedent and consequent fuzzy sets. However, this approach does not seem compatible with the practical setting of a Ruspini partition. This paper shows that the situation is less conflicting than it seems, and that interpolativity can still be guaranteed, in the same practical setting, and, interestingly, from two different modeling points of view. This paper addresses the case of single-input single-output fuzzy rules.

Klasifikace

  • Druh

    J<sub>x</sub> - Nezařazeno - Článek v odborném periodiku (Jimp, Jsc a Jost)

  • CEP obor

    BA - Obecná matematika

  • OECD FORD obor

Návaznosti výsledku

  • Projekt

    <a href="/cs/project/IAA108270902" target="_blank" >IAA108270902: Teorie semilineárních svazově uspořádaných prostorů</a><br>

  • Návaznosti

    P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)<br>Z - Vyzkumny zamer (s odkazem do CEZ)

Ostatní

  • Rok uplatnění

    2013

  • Kód důvěrnosti údajů

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Údaje specifické pro druh výsledku

  • Název periodika

    INFORM SCIENCES

  • ISSN

    0020-0255

  • e-ISSN

  • Svazek periodika

    234

  • Číslo periodika v rámci svazku

    1

  • Stát vydavatele periodika

    NL - Nizozemsko

  • Počet stran výsledku

    13

  • Strana od-do

    16-28

  • Kód UT WoS článku

  • EID výsledku v databázi Scopus