A Combined Approach to Adaptive Differential Evolution
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F61988987%3A17610%2F13%3AA13015RP" target="_blank" >RIV/61988987:17610/13:A13015RP - isvavai.cz</a>
Výsledek na webu
—
DOI - Digital Object Identifier
—
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
A Combined Approach to Adaptive Differential Evolution
Popis výsledku v původním jazyce
The paper deals with the adaptive mechanisms in differential evolution (DE) algorithm. DE is a simple and effective stochastic algorithm frequently used in solving the real-world global optimization problems. The efficiency of the algorithm is sensitiveto setting its control parameters. Several adaptive approaches have appeared recently in order to avoid control-parameter tuning. A new adaptive variant of differential evolution is proposed in this study. It is based on a combination of two adaptive approaches published before. The new algorithm was tested on the well-known set of benchmark problems developed for the special session of CEC2005 at four levels of population size and its performance was compared with the adaptive variants that were applied in the design of the new algorithm. The new adaptive DE variant outperformed the others in several test problems but its efficiency on average was not better.
Název v anglickém jazyce
A Combined Approach to Adaptive Differential Evolution
Popis výsledku anglicky
The paper deals with the adaptive mechanisms in differential evolution (DE) algorithm. DE is a simple and effective stochastic algorithm frequently used in solving the real-world global optimization problems. The efficiency of the algorithm is sensitiveto setting its control parameters. Several adaptive approaches have appeared recently in order to avoid control-parameter tuning. A new adaptive variant of differential evolution is proposed in this study. It is based on a combination of two adaptive approaches published before. The new algorithm was tested on the well-known set of benchmark problems developed for the special session of CEC2005 at four levels of population size and its performance was compared with the adaptive variants that were applied in the design of the new algorithm. The new adaptive DE variant outperformed the others in several test problems but its efficiency on average was not better.
Klasifikace
Druh
J<sub>x</sub> - Nezařazeno - Článek v odborném periodiku (Jimp, Jsc a Jost)
CEP obor
IN - Informatika
OECD FORD obor
—
Návaznosti výsledku
Projekt
<a href="/cs/project/ED1.1.00%2F02.0070" target="_blank" >ED1.1.00/02.0070: Centrum excelence IT4Innovations</a><br>
Návaznosti
P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)<br>S - Specificky vyzkum na vysokych skolach
Ostatní
Rok uplatnění
2013
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název periodika
NEURAL NETW WORLD
ISSN
1210-0552
e-ISSN
—
Svazek periodika
23
Číslo periodika v rámci svazku
1
Stát vydavatele periodika
CZ - Česká republika
Počet stran výsledku
13
Strana od-do
3-15
Kód UT WoS článku
—
EID výsledku v databázi Scopus
—