Self-Learning Genetic Algorithm for a Timetabling Problem with Fuzzy Constraints
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F61988987%3A17610%2F13%3AA14015ZZ" target="_blank" >RIV/61988987:17610/13:A14015ZZ - isvavai.cz</a>
Výsledek na webu
—
DOI - Digital Object Identifier
—
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Self-Learning Genetic Algorithm for a Timetabling Problem with Fuzzy Constraints
Popis výsledku v původním jazyce
Timetabling Problem is NP-hard combinatorial optimization problem which lacks analytical solution methods. Here, for solving this problem we present a specific genetic algorithm with fuzzy constraints. Our method incorporates a self-learning genetic algorithm using indirect representation based on event priorities, and heuristic local search operators to tackle real world timetabling problem. By fuzzy sets we measure violation of soft constraints in fitness function to take care of inherent uncertaintyand vagueness involved in real life data. The proposed technique satisfies all hard constraints of problem and achieves significantly better score in satisfying soft constraints. The algorithm is computationally effective as it is demonstrated on a smallrealistic example for which an optimal solution is known by exhaustive calculation. The structure of the algorithm enables parallel computations being necessary for solving large real life problems.
Název v anglickém jazyce
Self-Learning Genetic Algorithm for a Timetabling Problem with Fuzzy Constraints
Popis výsledku anglicky
Timetabling Problem is NP-hard combinatorial optimization problem which lacks analytical solution methods. Here, for solving this problem we present a specific genetic algorithm with fuzzy constraints. Our method incorporates a self-learning genetic algorithm using indirect representation based on event priorities, and heuristic local search operators to tackle real world timetabling problem. By fuzzy sets we measure violation of soft constraints in fitness function to take care of inherent uncertaintyand vagueness involved in real life data. The proposed technique satisfies all hard constraints of problem and achieves significantly better score in satisfying soft constraints. The algorithm is computationally effective as it is demonstrated on a smallrealistic example for which an optimal solution is known by exhaustive calculation. The structure of the algorithm enables parallel computations being necessary for solving large real life problems.
Klasifikace
Druh
J<sub>x</sub> - Nezařazeno - Článek v odborném periodiku (Jimp, Jsc a Jost)
CEP obor
IN - Informatika
OECD FORD obor
—
Návaznosti výsledku
Projekt
<a href="/cs/project/ED1.1.00%2F02.0070" target="_blank" >ED1.1.00/02.0070: Centrum excelence IT4Innovations</a><br>
Návaznosti
P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)
Ostatní
Rok uplatnění
2013
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název periodika
INT J INNOV COMPUT I
ISSN
1349-4198
e-ISSN
—
Svazek periodika
9
Číslo periodika v rámci svazku
11
Stát vydavatele periodika
JP - Japonsko
Počet stran výsledku
18
Strana od-do
4565-4582
Kód UT WoS článku
—
EID výsledku v databázi Scopus
—