Bipolar semicopulas
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F61988987%3A17610%2F15%3AA1601EDW" target="_blank" >RIV/61988987:17610/15:A1601EDW - isvavai.cz</a>
Výsledek na webu
—
DOI - Digital Object Identifier
—
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Bipolar semicopulas
Popis výsledku v původním jazyce
The concept of semicopula plays a fundamental role in the aggregation theory on interval [0, 1]. Semicopulas are applied, for example, in the definition of universal integrals. We present an extension of the notion of semicopula to the case of symmetricbipolar interval [-1, 1]. We call this extension bipolar semicopula. The last definition can be used to obtain a simplified definition of the bipolar universal integral. Moreover, bipolar semicopulas allow for an extension of theory of quasi-copulas to the interval [-1, 1].
Název v anglickém jazyce
Bipolar semicopulas
Popis výsledku anglicky
The concept of semicopula plays a fundamental role in the aggregation theory on interval [0, 1]. Semicopulas are applied, for example, in the definition of universal integrals. We present an extension of the notion of semicopula to the case of symmetricbipolar interval [-1, 1]. We call this extension bipolar semicopula. The last definition can be used to obtain a simplified definition of the bipolar universal integral. Moreover, bipolar semicopulas allow for an extension of theory of quasi-copulas to the interval [-1, 1].
Klasifikace
Druh
J<sub>x</sub> - Nezařazeno - Článek v odborném periodiku (Jimp, Jsc a Jost)
CEP obor
BA - Obecná matematika
OECD FORD obor
—
Návaznosti výsledku
Projekt
<a href="/cs/project/ED1.1.00%2F02.0070" target="_blank" >ED1.1.00/02.0070: Centrum excelence IT4Innovations</a><br>
Návaznosti
P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)
Ostatní
Rok uplatnění
2015
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název periodika
FUZZY SET SYST
ISSN
0165-0114
e-ISSN
—
Svazek periodika
—
Číslo periodika v rámci svazku
268
Stát vydavatele periodika
NL - Nizozemsko
Počet stran výsledku
8
Strana od-do
141-148
Kód UT WoS článku
—
EID výsledku v databázi Scopus
—