The Role of a T-norm and Partitioning in Fuzzy Association Analysis
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F61988987%3A17610%2F15%3AA1701B7C" target="_blank" >RIV/61988987:17610/15:A1701B7C - isvavai.cz</a>
Výsledek na webu
—
DOI - Digital Object Identifier
—
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
The Role of a T-norm and Partitioning in Fuzzy Association Analysis
Popis výsledku v původním jazyce
Fuzzy association analysis extracts relationships from data. The result of fuzzy association analysis depends on a chosen t-norm that is used for calculating confidence and support measures of mined association rules. We show that the set of mined association rules might change depending on the t-norm. We measure the distances of sets of mined rules with different t-norms and also with set of rules mined by crisp association analysis. We experiment with various datasets and partitioning methods to examine relationships of mined rules by different t-norms. Our experiments shed new light on application of fuzzy association mining and confirm that fuzzy association analysis usually brings signifficantly different results when compared to results given by crisp (non-fuzzy) association analysis.
Název v anglickém jazyce
The Role of a T-norm and Partitioning in Fuzzy Association Analysis
Popis výsledku anglicky
Fuzzy association analysis extracts relationships from data. The result of fuzzy association analysis depends on a chosen t-norm that is used for calculating confidence and support measures of mined association rules. We show that the set of mined association rules might change depending on the t-norm. We measure the distances of sets of mined rules with different t-norms and also with set of rules mined by crisp association analysis. We experiment with various datasets and partitioning methods to examine relationships of mined rules by different t-norms. Our experiments shed new light on application of fuzzy association mining and confirm that fuzzy association analysis usually brings signifficantly different results when compared to results given by crisp (non-fuzzy) association analysis.
Klasifikace
Druh
D - Stať ve sborníku
CEP obor
BA - Obecná matematika
OECD FORD obor
—
Návaznosti výsledku
Projekt
<a href="/cs/project/ED1.1.00%2F02.0070" target="_blank" >ED1.1.00/02.0070: Centrum excelence IT4Innovations</a><br>
Návaznosti
P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)<br>S - Specificky vyzkum na vysokych skolach
Ostatní
Rok uplatnění
2015
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název statě ve sborníku
Strengthening Links between Data Analysis and Soft Computing
ISBN
978-3-319-10764-6
ISSN
2194-5357
e-ISSN
—
Počet stran výsledku
9
Strana od-do
283-291
Název nakladatele
Springer-Verlag
Místo vydání
—
Místo konání akce
Varšava
Datum konání akce
22. 9. 2014
Typ akce podle státní příslušnosti
WRD - Celosvětová akce
Kód UT WoS článku
—