Vše

Co hledáte?

Vše
Projekty
Výsledky výzkumu
Subjekty

Rychlé hledání

  • Projekty podpořené TA ČR
  • Významné projekty
  • Projekty s nejvyšší státní podporou
  • Aktuálně běžící projekty

Chytré vyhledávání

  • Takto najdu konkrétní +slovo
  • Takto z výsledků -slovo zcela vynechám
  • “Takto můžu najít celou frázi”

Machine Learning Approach to Point Localization System

Identifikátory výsledku

  • Kód výsledku v IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F61988987%3A17610%2F15%3AA1701E61" target="_blank" >RIV/61988987:17610/15:A1701E61 - isvavai.cz</a>

  • Výsledek na webu

  • DOI - Digital Object Identifier

Alternativní jazyky

  • Jazyk výsledku

    angličtina

  • Název v původním jazyce

    Machine Learning Approach to Point Localization System

  • Popis výsledku v původním jazyce

    The article introduces point localization systems in 3D Euclidean space based on neural networks. There are two models presented. The first one identified distances between a randomly generated point and a reference points in the defined domain. Then a neural network uses the obtained distances as its inputs to determine the actual position of the point in the domain space. Due to a relatively good accuracy that was obtained during the experimental study, the proposed model based on neural networks was used in the second model as an acoustic Motion Capturing system (MoCap). MoCap system is represented by a neural network that uses obtained distances between transmitters and a receiver as its inputs to determine an actual position of the receiver in space. We also propose a new way to minimize a training set by using ANFIS approach in this specific problem. All obtained results are summarized in the conclusion.

  • Název v anglickém jazyce

    Machine Learning Approach to Point Localization System

  • Popis výsledku anglicky

    The article introduces point localization systems in 3D Euclidean space based on neural networks. There are two models presented. The first one identified distances between a randomly generated point and a reference points in the defined domain. Then a neural network uses the obtained distances as its inputs to determine the actual position of the point in the domain space. Due to a relatively good accuracy that was obtained during the experimental study, the proposed model based on neural networks was used in the second model as an acoustic Motion Capturing system (MoCap). MoCap system is represented by a neural network that uses obtained distances between transmitters and a receiver as its inputs to determine an actual position of the receiver in space. We also propose a new way to minimize a training set by using ANFIS approach in this specific problem. All obtained results are summarized in the conclusion.

Klasifikace

  • Druh

    D - Stať ve sborníku

  • CEP obor

    IN - Informatika

  • OECD FORD obor

Návaznosti výsledku

  • Projekt

    <a href="/cs/project/ED1.1.00%2F02.0070" target="_blank" >ED1.1.00/02.0070: Centrum excelence IT4Innovations</a><br>

  • Návaznosti

    P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)

Ostatní

  • Rok uplatnění

    2015

  • Kód důvěrnosti údajů

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Údaje specifické pro druh výsledku

  • Název statě ve sborníku

    IEEE 13th International Symposium on Applied Machine Intelligence and Informatics

  • ISBN

    978-1-4799-8221-9

  • ISSN

  • e-ISSN

  • Počet stran výsledku

    5

  • Strana od-do

    313-317

  • Název nakladatele

    IEEE

  • Místo vydání

    New York

  • Místo konání akce

    Slovakia, Herľany

  • Datum konání akce

    22. 1. 2015

  • Typ akce podle státní příslušnosti

    WRD - Celosvětová akce

  • Kód UT WoS článku

    000380524900051