Vše

Co hledáte?

Vše
Projekty
Výsledky výzkumu
Subjekty

Rychlé hledání

  • Projekty podpořené TA ČR
  • Významné projekty
  • Projekty s nejvyšší státní podporou
  • Aktuálně běžící projekty

Chytré vyhledávání

  • Takto najdu konkrétní +slovo
  • Takto z výsledků -slovo zcela vynechám
  • “Takto můžu najít celou frázi”

A Graded Approach to Cardinal Theory of Finite Fuzzy Sets, Part I: Graded Equipollence

Identifikátory výsledku

  • Kód výsledku v IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F61988987%3A17610%2F16%3AA1701B7G" target="_blank" >RIV/61988987:17610/16:A1701B7G - isvavai.cz</a>

  • Výsledek na webu

  • DOI - Digital Object Identifier

Alternativní jazyky

  • Jazyk výsledku

    angličtina

  • Název v původním jazyce

    A Graded Approach to Cardinal Theory of Finite Fuzzy Sets, Part I: Graded Equipollence

  • Popis výsledku v původním jazyce

    In this article, we propose a fuzzy class relation assigning to each pair of finite fuzzy sets a degree to which they are equipollent, which indicates that they have the same number of elements. The concepts of fuzzy sets and fuzzy classes in the class of all sets (in ZFC) are introduced, and several standard relations and constructions, such as the fuzzy power set and exponentiation, are defined. A functional approach to the cardinal theory of finite fuzzy sets based on graded equipollence is shown, and a relation to generalized cardinals and Wygralak's cardinal theory of finite fuzzy sets defined over triangular norms is demonstrated.

  • Název v anglickém jazyce

    A Graded Approach to Cardinal Theory of Finite Fuzzy Sets, Part I: Graded Equipollence

  • Popis výsledku anglicky

    In this article, we propose a fuzzy class relation assigning to each pair of finite fuzzy sets a degree to which they are equipollent, which indicates that they have the same number of elements. The concepts of fuzzy sets and fuzzy classes in the class of all sets (in ZFC) are introduced, and several standard relations and constructions, such as the fuzzy power set and exponentiation, are defined. A functional approach to the cardinal theory of finite fuzzy sets based on graded equipollence is shown, and a relation to generalized cardinals and Wygralak's cardinal theory of finite fuzzy sets defined over triangular norms is demonstrated.

Klasifikace

  • Druh

    J<sub>x</sub> - Nezařazeno - Článek v odborném periodiku (Jimp, Jsc a Jost)

  • CEP obor

    BA - Obecná matematika

  • OECD FORD obor

Návaznosti výsledku

  • Projekt

    Výsledek vznikl pri realizaci vícero projektů. Více informací v záložce Projekty.

  • Návaznosti

    P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)

Ostatní

  • Rok uplatnění

    2016

  • Kód důvěrnosti údajů

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Údaje specifické pro druh výsledku

  • Název periodika

    FUZZY SET SYST

  • ISSN

    0165-0114

  • e-ISSN

  • Svazek periodika

    298

  • Číslo periodika v rámci svazku

    1.8. 2016

  • Stát vydavatele periodika

    NL - Nizozemsko

  • Počet stran výsledku

    36

  • Strana od-do

    158-193

  • Kód UT WoS článku

    000376779800010

  • EID výsledku v databázi Scopus