Regression analysis based on linguistic associations and Perception-based Logical Deduction
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F61988987%3A17610%2F17%3AA1701F9F" target="_blank" >RIV/61988987:17610/17:A1701F9F - isvavai.cz</a>
Výsledek na webu
<a href="http://dx.doi.org/10.1016/j.eswa.2016.08.053" target="_blank" >http://dx.doi.org/10.1016/j.eswa.2016.08.053</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1016/j.eswa.2016.08.053" target="_blank" >10.1016/j.eswa.2016.08.053</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Regression analysis based on linguistic associations and Perception-based Logical Deduction
Popis výsledku v původním jazyce
We propose a new generalized model of linguistic variables based on fuzzy partition and its subpartitions. We use this new model for mining relationships between linguistic variables (linguistic associations) from a data set. These relationships can be interpreted as fuzzy IF-THEN rules in the implicative fuzzy inference engine, which is an extended version of the implicative inference called Perception-based Logical Deduction. We show that our extension leads to statistically significant improvements with respect to the previous model used with the help of original and successful Perception-based Logical Deduction. We perform the comparison with different measures of rule quality and five datasets. We can obtain improvements in prediction precision while retaining the interpretability of the models. We also compare our method with the classical machine learning methods and obtain a similar quality of precision, which is very encouraging because interpretability usually leads to worse precision.
Název v anglickém jazyce
Regression analysis based on linguistic associations and Perception-based Logical Deduction
Popis výsledku anglicky
We propose a new generalized model of linguistic variables based on fuzzy partition and its subpartitions. We use this new model for mining relationships between linguistic variables (linguistic associations) from a data set. These relationships can be interpreted as fuzzy IF-THEN rules in the implicative fuzzy inference engine, which is an extended version of the implicative inference called Perception-based Logical Deduction. We show that our extension leads to statistically significant improvements with respect to the previous model used with the help of original and successful Perception-based Logical Deduction. We perform the comparison with different measures of rule quality and five datasets. We can obtain improvements in prediction precision while retaining the interpretability of the models. We also compare our method with the classical machine learning methods and obtain a similar quality of precision, which is very encouraging because interpretability usually leads to worse precision.
Klasifikace
Druh
J<sub>imp</sub> - Článek v periodiku v databázi Web of Science
CEP obor
—
OECD FORD obor
10101 - Pure mathematics
Návaznosti výsledku
Projekt
<a href="/cs/project/LQ1602" target="_blank" >LQ1602: IT4Innovations excellence in science</a><br>
Návaznosti
P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)<br>S - Specificky vyzkum na vysokych skolach
Ostatní
Rok uplatnění
2017
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název periodika
EXPERT SYSTEMS WITH APPLICATIONS
ISSN
0957-4174
e-ISSN
—
Svazek periodika
67
Číslo periodika v rámci svazku
Leden
Stát vydavatele periodika
GB - Spojené království Velké Británie a Severního Irska
Počet stran výsledku
8
Strana od-do
107-114
Kód UT WoS článku
000386861600010
EID výsledku v databázi Scopus
2-s2.0-84989204336