Vše

Co hledáte?

Vše
Projekty
Výsledky výzkumu
Subjekty

Rychlé hledání

  • Projekty podpořené TA ČR
  • Významné projekty
  • Projekty s nejvyšší státní podporou
  • Aktuálně běžící projekty

Chytré vyhledávání

  • Takto najdu konkrétní +slovo
  • Takto z výsledků -slovo zcela vynechám
  • “Takto můžu najít celou frázi”

Dynamic weights allocation according to uncertain evaluation information

Identifikátory výsledku

  • Kód výsledku v IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F61988987%3A17610%2F19%3AA2001ZSU" target="_blank" >RIV/61988987:17610/19:A2001ZSU - isvavai.cz</a>

  • Výsledek na webu

    <a href="https://www.tandfonline.com/doi/abs/10.1080/03081079.2018.1543667?journalCode=ggen20" target="_blank" >https://www.tandfonline.com/doi/abs/10.1080/03081079.2018.1543667?journalCode=ggen20</a>

  • DOI - Digital Object Identifier

    <a href="http://dx.doi.org/10.1080/03081079.2018.1543667" target="_blank" >10.1080/03081079.2018.1543667</a>

Alternativní jazyky

  • Jazyk výsledku

    angličtina

  • Název v původním jazyce

    Dynamic weights allocation according to uncertain evaluation information

  • Popis výsledku v původním jazyce

    Weights allocation methods are critical in Multi-Criteria Decision Making. Given numerical importances for each involved criterion, direct normalizing those numerical importances to obtain weights for those criteria is plain, lack of flexibility, and thus cannot well model some more types of subjective preferences of different decision makers like Dominance Strength as defined in this study. We show that concave RIM quantifier Q based OWA weights allocation method can well handle and model such preference. However, in real decision making those numerical importances are very often embodied by uncertain information such as independent random variables with discrete or continuous distributions, statistic information and interval numbers. In any of those circumstances, simple RIM quantifier Q based OWA weights allocation cannot work. Therefore, in this study, we will propose some special dynamic weights allocation methods to gradually allocate weights and accumulate allocated parts to each criterion, and finally, obtain a total weights collection. When the uncertain numerical importances become equivalent to general real numbers, the method automatically degenerates into general RIM quantifier based OWA weights allocation. The innovative weight allocations have discrete and continuous versions: the former can be well programmed while the latter has neat and succinct mathematical expression. The method can also be widely used in many other applications like some economic problems including investment quota allocation for one's favorite stocks, and the dynamic OWA aggregation for interval numbers.

  • Název v anglickém jazyce

    Dynamic weights allocation according to uncertain evaluation information

  • Popis výsledku anglicky

    Weights allocation methods are critical in Multi-Criteria Decision Making. Given numerical importances for each involved criterion, direct normalizing those numerical importances to obtain weights for those criteria is plain, lack of flexibility, and thus cannot well model some more types of subjective preferences of different decision makers like Dominance Strength as defined in this study. We show that concave RIM quantifier Q based OWA weights allocation method can well handle and model such preference. However, in real decision making those numerical importances are very often embodied by uncertain information such as independent random variables with discrete or continuous distributions, statistic information and interval numbers. In any of those circumstances, simple RIM quantifier Q based OWA weights allocation cannot work. Therefore, in this study, we will propose some special dynamic weights allocation methods to gradually allocate weights and accumulate allocated parts to each criterion, and finally, obtain a total weights collection. When the uncertain numerical importances become equivalent to general real numbers, the method automatically degenerates into general RIM quantifier based OWA weights allocation. The innovative weight allocations have discrete and continuous versions: the former can be well programmed while the latter has neat and succinct mathematical expression. The method can also be widely used in many other applications like some economic problems including investment quota allocation for one's favorite stocks, and the dynamic OWA aggregation for interval numbers.

Klasifikace

  • Druh

    J<sub>imp</sub> - Článek v periodiku v databázi Web of Science

  • CEP obor

  • OECD FORD obor

    10102 - Applied mathematics

Návaznosti výsledku

  • Projekt

  • Návaznosti

    I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace

Ostatní

  • Rok uplatnění

    2019

  • Kód důvěrnosti údajů

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Údaje specifické pro druh výsledku

  • Název periodika

    INTERNATIONAL JOURNAL OF GENERAL SYSTEMS

  • ISSN

    0308-1079

  • e-ISSN

    1563-5104

  • Svazek periodika

    48

  • Číslo periodika v rámci svazku

    1

  • Stát vydavatele periodika

    US - Spojené státy americké

  • Počet stran výsledku

    15

  • Strana od-do

    33-47

  • Kód UT WoS článku

    000451834000002

  • EID výsledku v databázi Scopus

    2-s2.0-85057341873