On Scatters of Probability Distributions and OWA Weights Collections
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F61988987%3A17610%2F19%3AA20021S7" target="_blank" >RIV/61988987:17610/19:A20021S7 - isvavai.cz</a>
Výsledek na webu
<a href="https://www.worldscientific.com/doi/10.1142/S021848851950034X" target="_blank" >https://www.worldscientific.com/doi/10.1142/S021848851950034X</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1142/S021848851950034X" target="_blank" >10.1142/S021848851950034X</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
On Scatters of Probability Distributions and OWA Weights Collections
Popis výsledku v původním jazyce
This study proposes a novel concept of Scatter for probability distribution (on [0,1]). The proposed measurement is different from famous Shannon Entropy since it considers [0,1] as a chain instead of a normal set. The measurement works easily and reasonably in practice and conforms to human intuition. Some interesting properties like symmetricity, translation invariance, weak convergence and concavity of this new measurement are also obtained. The measurement also has good potential in more theoretical studies and applications. The novel concept can also be suitably adapted for discrete OWA operators and RIM quantifiers. We then propose a new measurement, the Preference Scatter, with its normalized form, the Normalized Preference Scatter, for OWA weights collections. We analyze its reasonability as a new measurement for OWA weights collections with comparisons to some other measurements like Orness, Normalized Dispersion and Hurwicz Degree of OWA operators. In addition, the corresponding Preference Scatter for RIM quantifiers is defined.
Název v anglickém jazyce
On Scatters of Probability Distributions and OWA Weights Collections
Popis výsledku anglicky
This study proposes a novel concept of Scatter for probability distribution (on [0,1]). The proposed measurement is different from famous Shannon Entropy since it considers [0,1] as a chain instead of a normal set. The measurement works easily and reasonably in practice and conforms to human intuition. Some interesting properties like symmetricity, translation invariance, weak convergence and concavity of this new measurement are also obtained. The measurement also has good potential in more theoretical studies and applications. The novel concept can also be suitably adapted for discrete OWA operators and RIM quantifiers. We then propose a new measurement, the Preference Scatter, with its normalized form, the Normalized Preference Scatter, for OWA weights collections. We analyze its reasonability as a new measurement for OWA weights collections with comparisons to some other measurements like Orness, Normalized Dispersion and Hurwicz Degree of OWA operators. In addition, the corresponding Preference Scatter for RIM quantifiers is defined.
Klasifikace
Druh
J<sub>imp</sub> - Článek v periodiku v databázi Web of Science
CEP obor
—
OECD FORD obor
10102 - Applied mathematics
Návaznosti výsledku
Projekt
<a href="/cs/project/LQ1602" target="_blank" >LQ1602: IT4Innovations excellence in science</a><br>
Návaznosti
P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)
Ostatní
Rok uplatnění
2019
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název periodika
INTERNATIONAL JOURNAL OF UNCERTAINTY FUZZINESS AND KNOWLEDGE-BASED SYSTEMS
ISSN
0218-4885
e-ISSN
—
Svazek periodika
27
Číslo periodika v rámci svazku
5
Stát vydavatele periodika
SG - Singapurská republika
Počet stran výsledku
16
Strana od-do
773-788
Kód UT WoS článku
000489071100004
EID výsledku v databázi Scopus
2-s2.0-85073096663