Melting Probability Measure With OWA Operator to Generate Fuzzy Measure: The Crescent Method
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F61988987%3A17610%2F19%3AA20020WA" target="_blank" >RIV/61988987:17610/19:A20020WA - isvavai.cz</a>
Výsledek na webu
<a href="https://ieeexplore.ieee.org/document/8502859" target="_blank" >https://ieeexplore.ieee.org/document/8502859</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1109/TFUZZ.2018.2877605" target="_blank" >10.1109/TFUZZ.2018.2877605</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Melting Probability Measure With OWA Operator to Generate Fuzzy Measure: The Crescent Method
Popis výsledku v původním jazyce
Given probability information, i.e., a probability measure m with a random variable x on the outcome space N, the expected value of that random variable is commonly used as some valuable evaluation result for further decision making. However, there is no guarantee that the given probability information will he convincing to every decision maker. This is possible because decision makers may question the reliability of that provided probability information and can also be because decision makers often have their own different optimistic/pessimistic preferences. Often, such optimistic/pessimistic preferences can he easily embodied and expressed by some ordered weighted average (OWA) weight functions w. This study first compares and analyzes some simpler methods to melt the given OWA weight functions w with the given probability measure in to generate a new probability measure, pointing out their respective advantages and shortcomings. Then, this study proposes the melting axioms, which will both conform to our intuition and have mathematical reasonability. As the main finding of this study, we then propose the Crescent Method, which will effectively melt the given OWA weight function w with the given probability measure in to generate a final resulted fuzzy measure. Based on that melted fuzzy measure, we perform the Choquet integral of x as the more convincing evaluation result to decision makers with preference w. The study also proposes several interesting mathematical results such as the orness of resulted fuzzy measure will always be equal to the orness of the given OWA weight function w.
Název v anglickém jazyce
Melting Probability Measure With OWA Operator to Generate Fuzzy Measure: The Crescent Method
Popis výsledku anglicky
Given probability information, i.e., a probability measure m with a random variable x on the outcome space N, the expected value of that random variable is commonly used as some valuable evaluation result for further decision making. However, there is no guarantee that the given probability information will he convincing to every decision maker. This is possible because decision makers may question the reliability of that provided probability information and can also be because decision makers often have their own different optimistic/pessimistic preferences. Often, such optimistic/pessimistic preferences can he easily embodied and expressed by some ordered weighted average (OWA) weight functions w. This study first compares and analyzes some simpler methods to melt the given OWA weight functions w with the given probability measure in to generate a new probability measure, pointing out their respective advantages and shortcomings. Then, this study proposes the melting axioms, which will both conform to our intuition and have mathematical reasonability. As the main finding of this study, we then propose the Crescent Method, which will effectively melt the given OWA weight function w with the given probability measure in to generate a final resulted fuzzy measure. Based on that melted fuzzy measure, we perform the Choquet integral of x as the more convincing evaluation result to decision makers with preference w. The study also proposes several interesting mathematical results such as the orness of resulted fuzzy measure will always be equal to the orness of the given OWA weight function w.
Klasifikace
Druh
J<sub>imp</sub> - Článek v periodiku v databázi Web of Science
CEP obor
—
OECD FORD obor
10102 - Applied mathematics
Návaznosti výsledku
Projekt
—
Návaznosti
I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace
Ostatní
Rok uplatnění
2019
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název periodika
IEEE T FUZZY SYST
ISSN
1063-6706
e-ISSN
1941-0034
Svazek periodika
27
Číslo periodika v rámci svazku
6
Stát vydavatele periodika
US - Spojené státy americké
Počet stran výsledku
7
Strana od-do
1309-1316
Kód UT WoS článku
000470837100015
EID výsledku v databázi Scopus
2-s2.0-85055677279