Vše

Co hledáte?

Vše
Projekty
Výsledky výzkumu
Subjekty

Rychlé hledání

  • Projekty podpořené TA ČR
  • Významné projekty
  • Projekty s nejvyšší státní podporou
  • Aktuálně běžící projekty

Chytré vyhledávání

  • Takto najdu konkrétní +slovo
  • Takto z výsledků -slovo zcela vynechám
  • “Takto můžu najít celou frázi”

Melting Probability Measure With OWA Operator to Generate Fuzzy Measure: The Crescent Method

Identifikátory výsledku

  • Kód výsledku v IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F61988987%3A17610%2F19%3AA20020WA" target="_blank" >RIV/61988987:17610/19:A20020WA - isvavai.cz</a>

  • Výsledek na webu

    <a href="https://ieeexplore.ieee.org/document/8502859" target="_blank" >https://ieeexplore.ieee.org/document/8502859</a>

  • DOI - Digital Object Identifier

    <a href="http://dx.doi.org/10.1109/TFUZZ.2018.2877605" target="_blank" >10.1109/TFUZZ.2018.2877605</a>

Alternativní jazyky

  • Jazyk výsledku

    angličtina

  • Název v původním jazyce

    Melting Probability Measure With OWA Operator to Generate Fuzzy Measure: The Crescent Method

  • Popis výsledku v původním jazyce

    Given probability information, i.e., a probability measure m with a random variable x on the outcome space N, the expected value of that random variable is commonly used as some valuable evaluation result for further decision making. However, there is no guarantee that the given probability information will he convincing to every decision maker. This is possible because decision makers may question the reliability of that provided probability information and can also be because decision makers often have their own different optimistic/pessimistic preferences. Often, such optimistic/pessimistic preferences can he easily embodied and expressed by some ordered weighted average (OWA) weight functions w. This study first compares and analyzes some simpler methods to melt the given OWA weight functions w with the given probability measure in to generate a new probability measure, pointing out their respective advantages and shortcomings. Then, this study proposes the melting axioms, which will both conform to our intuition and have mathematical reasonability. As the main finding of this study, we then propose the Crescent Method, which will effectively melt the given OWA weight function w with the given probability measure in to generate a final resulted fuzzy measure. Based on that melted fuzzy measure, we perform the Choquet integral of x as the more convincing evaluation result to decision makers with preference w. The study also proposes several interesting mathematical results such as the orness of resulted fuzzy measure will always be equal to the orness of the given OWA weight function w.

  • Název v anglickém jazyce

    Melting Probability Measure With OWA Operator to Generate Fuzzy Measure: The Crescent Method

  • Popis výsledku anglicky

    Given probability information, i.e., a probability measure m with a random variable x on the outcome space N, the expected value of that random variable is commonly used as some valuable evaluation result for further decision making. However, there is no guarantee that the given probability information will he convincing to every decision maker. This is possible because decision makers may question the reliability of that provided probability information and can also be because decision makers often have their own different optimistic/pessimistic preferences. Often, such optimistic/pessimistic preferences can he easily embodied and expressed by some ordered weighted average (OWA) weight functions w. This study first compares and analyzes some simpler methods to melt the given OWA weight functions w with the given probability measure in to generate a new probability measure, pointing out their respective advantages and shortcomings. Then, this study proposes the melting axioms, which will both conform to our intuition and have mathematical reasonability. As the main finding of this study, we then propose the Crescent Method, which will effectively melt the given OWA weight function w with the given probability measure in to generate a final resulted fuzzy measure. Based on that melted fuzzy measure, we perform the Choquet integral of x as the more convincing evaluation result to decision makers with preference w. The study also proposes several interesting mathematical results such as the orness of resulted fuzzy measure will always be equal to the orness of the given OWA weight function w.

Klasifikace

  • Druh

    J<sub>imp</sub> - Článek v periodiku v databázi Web of Science

  • CEP obor

  • OECD FORD obor

    10102 - Applied mathematics

Návaznosti výsledku

  • Projekt

  • Návaznosti

    I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace

Ostatní

  • Rok uplatnění

    2019

  • Kód důvěrnosti údajů

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Údaje specifické pro druh výsledku

  • Název periodika

    IEEE T FUZZY SYST

  • ISSN

    1063-6706

  • e-ISSN

    1941-0034

  • Svazek periodika

    27

  • Číslo periodika v rámci svazku

    6

  • Stát vydavatele periodika

    US - Spojené státy americké

  • Počet stran výsledku

    7

  • Strana od-do

    1309-1316

  • Kód UT WoS článku

    000470837100015

  • EID výsledku v databázi Scopus

    2-s2.0-85055677279