Bi-polar preference based weights allocation with incomplete fuzzy relations
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F61989592%3A15310%2F23%3A73621128" target="_blank" >RIV/61989592:15310/23:73621128 - isvavai.cz</a>
Výsledek na webu
<a href="https://www.sciencedirect.com/science/article/pii/S0020025522013883" target="_blank" >https://www.sciencedirect.com/science/article/pii/S0020025522013883</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1016/j.ins.2022.11.097" target="_blank" >10.1016/j.ins.2022.11.097</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Bi-polar preference based weights allocation with incomplete fuzzy relations
Popis výsledku v původním jazyce
Normalized weight vector determination under bi-polar preferences is important in multicriteria decision making and its related evaluation problems. In order to determine weights for the elements in partially ordered set which can embody bi-polar preferences, some new methods such as the ordered weighted averaging (OWA) aggregation on lattice using three-set formulation have been proposed. However, when there are no posets and orders but fuzzy relations available, some new effective generalized methods should be proposed. This work differentiates two types of special fuzzy relations, called incomplete fuzzy relation and contradictive fuzzy relation. Two objective methods to derive incomplete fuzzy relation from a set of vectors and basic uncertain information (BUI) granules are introduced. Two scaling methods to transform contradictive fuzzy relation into incomplete fuzzy relation are suggested. Based on those derived fuzzy relations and given convex/concave basic unit monotonic (BUM) functions, some weights allocation methods are proposed which can well embody the bi-polar preferences of decision makers. The method further generalizes the OWA aggregation on lattice. Some mathematical properties, four different instances and some numerical examples with application backgrounds or potentials are also provided.
Název v anglickém jazyce
Bi-polar preference based weights allocation with incomplete fuzzy relations
Popis výsledku anglicky
Normalized weight vector determination under bi-polar preferences is important in multicriteria decision making and its related evaluation problems. In order to determine weights for the elements in partially ordered set which can embody bi-polar preferences, some new methods such as the ordered weighted averaging (OWA) aggregation on lattice using three-set formulation have been proposed. However, when there are no posets and orders but fuzzy relations available, some new effective generalized methods should be proposed. This work differentiates two types of special fuzzy relations, called incomplete fuzzy relation and contradictive fuzzy relation. Two objective methods to derive incomplete fuzzy relation from a set of vectors and basic uncertain information (BUI) granules are introduced. Two scaling methods to transform contradictive fuzzy relation into incomplete fuzzy relation are suggested. Based on those derived fuzzy relations and given convex/concave basic unit monotonic (BUM) functions, some weights allocation methods are proposed which can well embody the bi-polar preferences of decision makers. The method further generalizes the OWA aggregation on lattice. Some mathematical properties, four different instances and some numerical examples with application backgrounds or potentials are also provided.
Klasifikace
Druh
J<sub>imp</sub> - Článek v periodiku v databázi Web of Science
CEP obor
—
OECD FORD obor
10201 - Computer sciences, information science, bioinformathics (hardware development to be 2.2, social aspect to be 5.8)
Návaznosti výsledku
Projekt
—
Návaznosti
S - Specificky vyzkum na vysokych skolach
Ostatní
Rok uplatnění
2023
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název periodika
INFORMATION SCIENCES
ISSN
0020-0255
e-ISSN
1872-6291
Svazek periodika
621
Číslo periodika v rámci svazku
APR
Stát vydavatele periodika
US - Spojené státy americké
Počet stran výsledku
11
Strana od-do
308-318
Kód UT WoS článku
000900939600018
EID výsledku v databázi Scopus
2-s2.0-85143611929