A Graded Approach to Cardinal Theory of Finite Fuzzy Sets, Part II: Fuzzy Cardinality Measures and Their Relationship to Graded Equipollence
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F61988987%3A17610%2F20%3AA2101N3H" target="_blank" >RIV/61988987:17610/20:A2101N3H - isvavai.cz</a>
Výsledek na webu
<a href="https://www.sciencedirect.com/science/article/pii/S0165011418308303" target="_blank" >https://www.sciencedirect.com/science/article/pii/S0165011418308303</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1016/j.fss.2018.10.023" target="_blank" >10.1016/j.fss.2018.10.023</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
A Graded Approach to Cardinal Theory of Finite Fuzzy Sets, Part II: Fuzzy Cardinality Measures and Their Relationship to Graded Equipollence
Popis výsledku v původním jazyce
In this article, we propose an axiomatic system for fuzzy 'cardinality' measures (referred to as fuzzy c-measures for short) assigning to each finite fuzzy set a generalized cardinal that expresses the number of elements that the fuzzy set contains. The system generalizes an axiomatic system introduced by J. Casasnovas and J. Torrens (2003). We show that each fuzzy c-measure is determined by two appropriate homomorphisms between the reducts of residuated-dually residuated (rdr-)lattices. For linearly ordered rdr-lattices, we prove that each fuzzy c-measure is a product of a non-decreasing and a non-increasing fuzzy c-measure, which indicates that there is a close relation between fuzzy c-measures and FGCount, FLCount and FECount provided by L.A. Zadeh (1983) and generalized by M. Wygralak (2001). Finally, the relationship of fuzzy c-measures to graded equipollence introduced in the first part of this contribution is analyzed.
Název v anglickém jazyce
A Graded Approach to Cardinal Theory of Finite Fuzzy Sets, Part II: Fuzzy Cardinality Measures and Their Relationship to Graded Equipollence
Popis výsledku anglicky
In this article, we propose an axiomatic system for fuzzy 'cardinality' measures (referred to as fuzzy c-measures for short) assigning to each finite fuzzy set a generalized cardinal that expresses the number of elements that the fuzzy set contains. The system generalizes an axiomatic system introduced by J. Casasnovas and J. Torrens (2003). We show that each fuzzy c-measure is determined by two appropriate homomorphisms between the reducts of residuated-dually residuated (rdr-)lattices. For linearly ordered rdr-lattices, we prove that each fuzzy c-measure is a product of a non-decreasing and a non-increasing fuzzy c-measure, which indicates that there is a close relation between fuzzy c-measures and FGCount, FLCount and FECount provided by L.A. Zadeh (1983) and generalized by M. Wygralak (2001). Finally, the relationship of fuzzy c-measures to graded equipollence introduced in the first part of this contribution is analyzed.
Klasifikace
Druh
J<sub>imp</sub> - Článek v periodiku v databázi Web of Science
CEP obor
—
OECD FORD obor
10102 - Applied mathematics
Návaznosti výsledku
Projekt
Výsledek vznikl pri realizaci vícero projektů. Více informací v záložce Projekty.
Návaznosti
P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)
Ostatní
Rok uplatnění
2020
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název periodika
FUZZY SET SYST
ISSN
0165-0114
e-ISSN
—
Svazek periodika
380
Číslo periodika v rámci svazku
February
Stát vydavatele periodika
NL - Nizozemsko
Počet stran výsledku
40
Strana od-do
64-103
Kód UT WoS článku
000497961200004
EID výsledku v databázi Scopus
2-s2.0-85055990190