Data Preprocessing Technique for Neural Networks Based on Image Represented by a Fuzzy Function
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F61988987%3A17610%2F20%3AA2101VJP" target="_blank" >RIV/61988987:17610/20:A2101VJP - isvavai.cz</a>
Výsledek na webu
<a href="https://ieeexplore.ieee.org/document/8691766" target="_blank" >https://ieeexplore.ieee.org/document/8691766</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1109/TFUZZ.2019.2911494" target="_blank" >10.1109/TFUZZ.2019.2911494</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Data Preprocessing Technique for Neural Networks Based on Image Represented by a Fuzzy Function
Popis výsledku v původním jazyce
Although data preprocessing is a universal technique that can be widely used in neural networks, most research in this area is focused on designing new neural network architectures. In our work, we propose a preprocessing technique that enriches the original image data using local intensity information; this technique is motivated by human perception. To encode this information into an image, we introduce a new image structure named Image Represented by a Fuzzy Function. When using this structure, a crisp intensity value of each pixel is replaced by a fuzzy set given by a membership function constructed with the usage of extremal values from the particular neighborhood of that pixel. We describe this structure and its properties and propose a way in which it can be used as an input into existing neural networks without any modifications. Based on our benchmark consisting of three well-known datasets and five neural network architectures, we show that the proposed preprocessing can, in most cases, decrease classification error compared with a baseline and two other preprocessing methods. To support our claim, we have also selected several publicly available projects and tested the impact of the preprocessing with a positive result.
Název v anglickém jazyce
Data Preprocessing Technique for Neural Networks Based on Image Represented by a Fuzzy Function
Popis výsledku anglicky
Although data preprocessing is a universal technique that can be widely used in neural networks, most research in this area is focused on designing new neural network architectures. In our work, we propose a preprocessing technique that enriches the original image data using local intensity information; this technique is motivated by human perception. To encode this information into an image, we introduce a new image structure named Image Represented by a Fuzzy Function. When using this structure, a crisp intensity value of each pixel is replaced by a fuzzy set given by a membership function constructed with the usage of extremal values from the particular neighborhood of that pixel. We describe this structure and its properties and propose a way in which it can be used as an input into existing neural networks without any modifications. Based on our benchmark consisting of three well-known datasets and five neural network architectures, we show that the proposed preprocessing can, in most cases, decrease classification error compared with a baseline and two other preprocessing methods. To support our claim, we have also selected several publicly available projects and tested the impact of the preprocessing with a positive result.
Klasifikace
Druh
J<sub>imp</sub> - Článek v periodiku v databázi Web of Science
CEP obor
—
OECD FORD obor
10102 - Applied mathematics
Návaznosti výsledku
Projekt
<a href="/cs/project/EF17_049%2F0008414" target="_blank" >EF17_049/0008414: Centrum pro výzkum a vývoj metod umělé intelligence v automobilovém průmyslu regionu</a><br>
Návaznosti
P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)<br>S - Specificky vyzkum na vysokych skolach
Ostatní
Rok uplatnění
2020
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název periodika
IEEE Transactions on Fuzzy Systems
ISSN
1063-6706
e-ISSN
1941-0034
Svazek periodika
28
Číslo periodika v rámci svazku
7
Stát vydavatele periodika
US - Spojené státy americké
Počet stran výsledku
10
Strana od-do
1195-1204
Kód UT WoS článku
000545205300002
EID výsledku v databázi Scopus
2-s2.0-85087805973