PRIME ENDS DYNAMICS IN PARAMETRISED FAMILIES OF ROTATIONAL ATTRACTORS
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F61988987%3A17610%2F20%3AA2101VVP" target="_blank" >RIV/61988987:17610/20:A2101VVP - isvavai.cz</a>
Výsledek na webu
<a href="https://www.researchgate.net/publication/333700392_PRIME_ENDS_DYNAMICS_IN_PARAMETRISED_FAMILIES_OF_ROTATIONAL_ATTRACTORS" target="_blank" >https://www.researchgate.net/publication/333700392_PRIME_ENDS_DYNAMICS_IN_PARAMETRISED_FAMILIES_OF_ROTATIONAL_ATTRACTORS</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1112/jlms.12328" target="_blank" >10.1112/jlms.12328</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
PRIME ENDS DYNAMICS IN PARAMETRISED FAMILIES OF ROTATIONAL ATTRACTORS
Popis výsledku v původním jazyce
We provide several new examples in dynamics on the 2-sphere, with the emphasis on better understanding the induced boundary dynamics of invariant domains in parametrized families. First, motivated by a topological version of the Poincaré-Bendixson Theorem obtained recently by Koropecki and Passeggi, we show the existence of homeomorphisms of the 2-sphere with Lakes of Wada rotational attractors, with an arbitrarily large number of complementary domains, and with or without fixed points, that are arbitrarily close to the identity. This answers a question of Le Roux. Second, from reduced Arnold's family we construct a parametrised family of Birkhoff-like cofrontier attractors, where at least for uncountably many choices of the parameters, two distinct irrational prime ends rotation numbers are induced from the two complementary domains. This example complements the resolution of Walker's Conjecture by Koropecki, Le Calvez and Nassiri from 2015. Third, answering a question of Boyland, we show that there exists a non-transitive Birkhoff-like attracting cofrontier which is obtained from a BBM embedding of inverse limit of circles, such that the interior prime ends rotation number belongs to the interior of the rotation interval of the cofrontier dynamics. There exists another BBM embedding of the same attractor so that the two induced prime ends rotation numbers are exactly the two endpoints of the rotation interval.
Název v anglickém jazyce
PRIME ENDS DYNAMICS IN PARAMETRISED FAMILIES OF ROTATIONAL ATTRACTORS
Popis výsledku anglicky
We provide several new examples in dynamics on the 2-sphere, with the emphasis on better understanding the induced boundary dynamics of invariant domains in parametrized families. First, motivated by a topological version of the Poincaré-Bendixson Theorem obtained recently by Koropecki and Passeggi, we show the existence of homeomorphisms of the 2-sphere with Lakes of Wada rotational attractors, with an arbitrarily large number of complementary domains, and with or without fixed points, that are arbitrarily close to the identity. This answers a question of Le Roux. Second, from reduced Arnold's family we construct a parametrised family of Birkhoff-like cofrontier attractors, where at least for uncountably many choices of the parameters, two distinct irrational prime ends rotation numbers are induced from the two complementary domains. This example complements the resolution of Walker's Conjecture by Koropecki, Le Calvez and Nassiri from 2015. Third, answering a question of Boyland, we show that there exists a non-transitive Birkhoff-like attracting cofrontier which is obtained from a BBM embedding of inverse limit of circles, such that the interior prime ends rotation number belongs to the interior of the rotation interval of the cofrontier dynamics. There exists another BBM embedding of the same attractor so that the two induced prime ends rotation numbers are exactly the two endpoints of the rotation interval.
Klasifikace
Druh
J<sub>imp</sub> - Článek v periodiku v databázi Web of Science
CEP obor
—
OECD FORD obor
10101 - Pure mathematics
Návaznosti výsledku
Projekt
<a href="/cs/project/LQ1602" target="_blank" >LQ1602: IT4Innovations excellence in science</a><br>
Návaznosti
P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)<br>I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace
Ostatní
Rok uplatnění
2020
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název periodika
J LOND MATH SOC (2)
ISSN
0024-6107
e-ISSN
—
Svazek periodika
102
Číslo periodika v rámci svazku
2
Stát vydavatele periodika
GB - Spojené království Velké Británie a Severního Irska
Počet stran výsledku
23
Strana od-do
557-579
Kód UT WoS článku
000524314900001
EID výsledku v databázi Scopus
2-s2.0-85082970653