Vše

Co hledáte?

Vše
Projekty
Výsledky výzkumu
Subjekty

Rychlé hledání

  • Projekty podpořené TA ČR
  • Významné projekty
  • Projekty s nejvyšší státní podporou
  • Aktuálně běžící projekty

Chytré vyhledávání

  • Takto najdu konkrétní +slovo
  • Takto z výsledků -slovo zcela vynechám
  • “Takto můžu najít celou frázi”

Parametrized family of pseudo-arc attractors: Physical measures and prime end rotations

Identifikátory výsledku

  • Kód výsledku v IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F61988987%3A17610%2F22%3AA2302A3Z" target="_blank" >RIV/61988987:17610/22:A2302A3Z - isvavai.cz</a>

  • Výsledek na webu

    <a href="https://londmathsoc.onlinelibrary.wiley.com/doi/full/10.1112/plms.12448" target="_blank" >https://londmathsoc.onlinelibrary.wiley.com/doi/full/10.1112/plms.12448</a>

  • DOI - Digital Object Identifier

    <a href="http://dx.doi.org/10.1112/plms.12448" target="_blank" >10.1112/plms.12448</a>

Alternativní jazyky

  • Jazyk výsledku

    angličtina

  • Název v původním jazyce

    Parametrized family of pseudo-arc attractors: Physical measures and prime end rotations

  • Popis výsledku v původním jazyce

    The main goal of this paper is to study topological and measure-theoretic properties of an intriguing family of strange planar attractors. Building toward these results, we first show that any generic Lebesgue measure-preserving map f generates the pseudo-arc as inverse limit with f as a single bonding map. These maps can be realized as attractors of disc homeomorphisms in such a way that the attractors vary continuously (in Hausdorff distance on the disc) with the change of bonding map as a parameter. Furthermore, for generic Lebesgue measure-preserving maps f the background Oxtoby–Ulam measures induced by Lebesgue measure for f on the interval are physical on the disc and in addition there is a dense set of maps f defining a unique physical measure. Moreover, the family of physical measures on the attractors varies continuously in the weak* topology; that is, the parametrized family is statistically stable. We also find an arc in the generic Lebesgue measure-preserving set of maps and construct a family of disk homeomorphisms parametrized by this arc which induces a continuously varying family of pseudo-arc attractors with prime ends rotation numbers varying continuously in [0,1/2]. It follows that there are uncountably many dynamically non-equivalent embeddings of the pseudo-arc in this family of attractors.

  • Název v anglickém jazyce

    Parametrized family of pseudo-arc attractors: Physical measures and prime end rotations

  • Popis výsledku anglicky

    The main goal of this paper is to study topological and measure-theoretic properties of an intriguing family of strange planar attractors. Building toward these results, we first show that any generic Lebesgue measure-preserving map f generates the pseudo-arc as inverse limit with f as a single bonding map. These maps can be realized as attractors of disc homeomorphisms in such a way that the attractors vary continuously (in Hausdorff distance on the disc) with the change of bonding map as a parameter. Furthermore, for generic Lebesgue measure-preserving maps f the background Oxtoby–Ulam measures induced by Lebesgue measure for f on the interval are physical on the disc and in addition there is a dense set of maps f defining a unique physical measure. Moreover, the family of physical measures on the attractors varies continuously in the weak* topology; that is, the parametrized family is statistically stable. We also find an arc in the generic Lebesgue measure-preserving set of maps and construct a family of disk homeomorphisms parametrized by this arc which induces a continuously varying family of pseudo-arc attractors with prime ends rotation numbers varying continuously in [0,1/2]. It follows that there are uncountably many dynamically non-equivalent embeddings of the pseudo-arc in this family of attractors.

Klasifikace

  • Druh

    J<sub>imp</sub> - Článek v periodiku v databázi Web of Science

  • CEP obor

  • OECD FORD obor

    10101 - Pure mathematics

Návaznosti výsledku

  • Projekt

  • Návaznosti

    I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace

Ostatní

  • Rok uplatnění

    2022

  • Kód důvěrnosti údajů

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Údaje specifické pro druh výsledku

  • Název periodika

    Proceedings of the London Mathematical Society

  • ISSN

    00246115

  • e-ISSN

  • Svazek periodika

  • Číslo periodika v rámci svazku

    2

  • Stát vydavatele periodika

    GB - Spojené království Velké Británie a Severního Irska

  • Počet stran výsledku

    40

  • Strana od-do

    318-357

  • Kód UT WoS článku

    000793741900001

  • EID výsledku v databázi Scopus

    2-s2.0-85129797814