Densely branching trees as models for Hénon-like and Lozi-like attractors
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F61988987%3A17610%2F23%3AA2402KZH" target="_blank" >RIV/61988987:17610/23:A2402KZH - isvavai.cz</a>
Výsledek na webu
<a href="https://www.sciencedirect.com/science/article/abs/pii/S0001870823003341?via%3Dihub" target="_blank" >https://www.sciencedirect.com/science/article/abs/pii/S0001870823003341?via%3Dihub</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1016/j.aim.2023.109191" target="_blank" >10.1016/j.aim.2023.109191</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Densely branching trees as models for Hénon-like and Lozi-like attractors
Popis výsledku v původním jazyce
Inspired by a recent work of Crovisier and Pujals on mildly dissipative diffeomorphisms of the plane, we show that Hénon-like and Lozi-like maps on their strange attractors are conjugate to natural extensions (a.k.a. shift homeomorphisms on inverse limits) of maps on metric trees with dense set of branch points. In consequence, these trees very well approximate the topology of the attractors, and the maps on them give good models of the dynamics. To the best of our knowledge, these are the first examples of canonical two-parameter families of attractors in the plane for which one is guaranteed such a 1-dimensional locally connected model tying together topology and dynamics of these attractors. For the Hénon maps this applies to a positive Lebesgue measure parameter set generalizing the Benedicks-Carleson parameters, the Wang-Young parameter set, and sheds more light onto the result of Barge from 1987, who showed that there exist parameter values for which Hénon maps on their attractors are not natural extensions of any maps on branched 1-manifolds. For the Lozi maps the result applies to an open set of parameters given by Misiurewicz in 1980. Our result can be seen as a generalization to the non-uniformly hyperbolic world of a classical result of Williams from 1967. We also show that no simpler 1-dimensional models exist.
Název v anglickém jazyce
Densely branching trees as models for Hénon-like and Lozi-like attractors
Popis výsledku anglicky
Inspired by a recent work of Crovisier and Pujals on mildly dissipative diffeomorphisms of the plane, we show that Hénon-like and Lozi-like maps on their strange attractors are conjugate to natural extensions (a.k.a. shift homeomorphisms on inverse limits) of maps on metric trees with dense set of branch points. In consequence, these trees very well approximate the topology of the attractors, and the maps on them give good models of the dynamics. To the best of our knowledge, these are the first examples of canonical two-parameter families of attractors in the plane for which one is guaranteed such a 1-dimensional locally connected model tying together topology and dynamics of these attractors. For the Hénon maps this applies to a positive Lebesgue measure parameter set generalizing the Benedicks-Carleson parameters, the Wang-Young parameter set, and sheds more light onto the result of Barge from 1987, who showed that there exist parameter values for which Hénon maps on their attractors are not natural extensions of any maps on branched 1-manifolds. For the Lozi maps the result applies to an open set of parameters given by Misiurewicz in 1980. Our result can be seen as a generalization to the non-uniformly hyperbolic world of a classical result of Williams from 1967. We also show that no simpler 1-dimensional models exist.
Klasifikace
Druh
J<sub>imp</sub> - Článek v periodiku v databázi Web of Science
CEP obor
—
OECD FORD obor
10101 - Pure mathematics
Návaznosti výsledku
Projekt
—
Návaznosti
I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace
Ostatní
Rok uplatnění
2023
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název periodika
ADV MATH
ISSN
0001-8708
e-ISSN
—
Svazek periodika
—
Číslo periodika v rámci svazku
429
Stát vydavatele periodika
US - Spojené státy americké
Počet stran výsledku
27
Strana od-do
1-27
Kód UT WoS článku
001043878300001
EID výsledku v databázi Scopus
2-s2.0-85164424570