Folding points of unimodal inverse limit spaces
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F61988987%3A17610%2F20%3AA2101X4M" target="_blank" >RIV/61988987:17610/20:A2101X4M - isvavai.cz</a>
Výsledek na webu
<a href="https://iopscience.iop.org/article/10.1088/1361-6544/ab4e31" target="_blank" >https://iopscience.iop.org/article/10.1088/1361-6544/ab4e31</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1088/1361-6544" target="_blank" >10.1088/1361-6544</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Folding points of unimodal inverse limit spaces
Popis výsledku v původním jazyce
Williams' work from the 1960s and 1970s provides a thorough understanding of hyperbolic one-dimensional attractors through their representation as inverse limits. In fact, point in a uniformly hyperbolic attractor has a neighbourhood that is homeomorphic to a Cantor set of open arcs. In order to understand the topology of non-uniformly hyperbolic attractors better, we study the existence and prevalence of points with more complicated local structures in simple models of planar attractors, focusing on unimodal inverse limits setting. Such points whose neighbourhoods are not homeomorphic to the product of a Cantor set and an open arc are called folding points. We distinguish between various types of folding points and study how the dynamics of the underlying unimodal map affects their structures. Specifically, we characterise unimodal inverse limit spaces for which every folding point is an endpoint.
Název v anglickém jazyce
Folding points of unimodal inverse limit spaces
Popis výsledku anglicky
Williams' work from the 1960s and 1970s provides a thorough understanding of hyperbolic one-dimensional attractors through their representation as inverse limits. In fact, point in a uniformly hyperbolic attractor has a neighbourhood that is homeomorphic to a Cantor set of open arcs. In order to understand the topology of non-uniformly hyperbolic attractors better, we study the existence and prevalence of points with more complicated local structures in simple models of planar attractors, focusing on unimodal inverse limits setting. Such points whose neighbourhoods are not homeomorphic to the product of a Cantor set and an open arc are called folding points. We distinguish between various types of folding points and study how the dynamics of the underlying unimodal map affects their structures. Specifically, we characterise unimodal inverse limit spaces for which every folding point is an endpoint.
Klasifikace
Druh
J<sub>imp</sub> - Článek v periodiku v databázi Web of Science
CEP obor
—
OECD FORD obor
10101 - Pure mathematics
Návaznosti výsledku
Projekt
—
Návaznosti
I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace
Ostatní
Rok uplatnění
2020
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název periodika
NONLINEARITY
ISSN
0951-7715
e-ISSN
—
Svazek periodika
33
Číslo periodika v rámci svazku
224
Stát vydavatele periodika
GB - Spojené království Velké Británie a Severního Irska
Počet stran výsledku
25
Strana od-do
224-248
Kód UT WoS článku
000499857400001
EID výsledku v databázi Scopus
2-s2.0-85081298779