Vše

Co hledáte?

Vše
Projekty
Výsledky výzkumu
Subjekty

Rychlé hledání

  • Projekty podpořené TA ČR
  • Významné projekty
  • Projekty s nejvyšší státní podporou
  • Aktuálně běžící projekty

Chytré vyhledávání

  • Takto najdu konkrétní +slovo
  • Takto z výsledků -slovo zcela vynechám
  • “Takto můžu najít celou frázi”

From arithmetics of extensional fuzzy numbers to their distances

Identifikátory výsledku

  • Kód výsledku v IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F61988987%3A17610%2F20%3AA21023N1" target="_blank" >RIV/61988987:17610/20:A21023N1 - isvavai.cz</a>

  • Výsledek na webu

    <a href="https://ieeexplore.ieee.org/document/9177594" target="_blank" >https://ieeexplore.ieee.org/document/9177594</a>

  • DOI - Digital Object Identifier

    <a href="http://dx.doi.org/10.1109/FUZZ48607.2020.9177594" target="_blank" >10.1109/FUZZ48607.2020.9177594</a>

Alternativní jazyky

  • Jazyk výsledku

    angličtina

  • Název v původním jazyce

    From arithmetics of extensional fuzzy numbers to their distances

  • Popis výsledku v původním jazyce

    The notion of the metric space that allows to measure a distance between objects of the given space, has a crucial importance for distinct parts of mathematics, for instance, for the approximation theory, interpolation methods, data analysis, optimization etc. In fuzzy mathematics, the same areas of applications have an analogous importance and thus, not surprisingly measuring the distance between objects possesses a desirable importance. In many cases, e.g., in fuzzy clustering, the use of the standard metric spaces is absolutely sufficient. However, if we deal with vague quantities represented by fuzzy numbers, though the application of a standard metric to fuzzy numbers is mathematically correct, it may lead to counterintuitive and undesirable results. Our investigation constructs the 'metric-like' spaces enabling to measure the distance between two fuzzy numbers in a way that is not disconnected from the used arithmetic of fuzzy numbers. Following the analogy from the classical math where the most natural distance between two numbers is the absolute value of their difference, in the case of fuzzy numbers and under the assumption that the distance is connected to the arithmetic, the most natural distance of two fuzzy numbers is the absolute values of their difference too. But then, naturally, the distance should map fuzzy numbers again to fuzzy numbers, not to crisp numbers. This article is a contribution to this area that guides readers from the fundamental notions to the final construction supported by some theoretical results.

  • Název v anglickém jazyce

    From arithmetics of extensional fuzzy numbers to their distances

  • Popis výsledku anglicky

    The notion of the metric space that allows to measure a distance between objects of the given space, has a crucial importance for distinct parts of mathematics, for instance, for the approximation theory, interpolation methods, data analysis, optimization etc. In fuzzy mathematics, the same areas of applications have an analogous importance and thus, not surprisingly measuring the distance between objects possesses a desirable importance. In many cases, e.g., in fuzzy clustering, the use of the standard metric spaces is absolutely sufficient. However, if we deal with vague quantities represented by fuzzy numbers, though the application of a standard metric to fuzzy numbers is mathematically correct, it may lead to counterintuitive and undesirable results. Our investigation constructs the 'metric-like' spaces enabling to measure the distance between two fuzzy numbers in a way that is not disconnected from the used arithmetic of fuzzy numbers. Following the analogy from the classical math where the most natural distance between two numbers is the absolute value of their difference, in the case of fuzzy numbers and under the assumption that the distance is connected to the arithmetic, the most natural distance of two fuzzy numbers is the absolute values of their difference too. But then, naturally, the distance should map fuzzy numbers again to fuzzy numbers, not to crisp numbers. This article is a contribution to this area that guides readers from the fundamental notions to the final construction supported by some theoretical results.

Klasifikace

  • Druh

    D - Stať ve sborníku

  • CEP obor

  • OECD FORD obor

    10102 - Applied mathematics

Návaznosti výsledku

  • Projekt

    Výsledek vznikl pri realizaci vícero projektů. Více informací v záložce Projekty.

  • Návaznosti

    P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)<br>S - Specificky vyzkum na vysokych skolach

Ostatní

  • Rok uplatnění

    2020

  • Kód důvěrnosti údajů

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Údaje specifické pro druh výsledku

  • Název statě ve sborníku

    IEEE Conference on Fuzzy Systems

  • ISBN

    978-172816932-3

  • ISSN

    1098-7584

  • e-ISSN

    1558-4739

  • Počet stran výsledku

    8

  • Strana od-do

    1-8

  • Název nakladatele

    IEEE

  • Místo vydání

    Glasgow

  • Místo konání akce

    Glasgow

  • Datum konání akce

    1. 1. 2020

  • Typ akce podle státní příslušnosti

    WRD - Celosvětová akce

  • Kód UT WoS článku