A pipeline for detecting and classifying objects in images
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F61988987%3A17610%2F20%3AA21025BL" target="_blank" >RIV/61988987:17610/20:A21025BL - isvavai.cz</a>
Výsledek na webu
<a href="https://ieeexplore.ieee.org/document/9204121" target="_blank" >https://ieeexplore.ieee.org/document/9204121</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1109/DSMP47368.2020.9204121" target="_blank" >10.1109/DSMP47368.2020.9204121</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
A pipeline for detecting and classifying objects in images
Popis výsledku v původním jazyce
With the increased accessibility to neural network frameworks and computation clouds, a wide range of competition websites offer real tasks for the neural network community to join. In this paper, we discuss a problem of object detection and classification. Based on our experience, we describe a general pipeline and necessary steps that may help researchers willing to participate in such competition. We partition the problem into two separate tasks. Firstly, we present state of the art for relevant neural networks concerning accuracy and computation time trade-off. Further, we create a survey of major techniques that leads to accuracy improvement. Namely, we recall image augmentation techniques, demonstrate the impact of various optimizers, and discuss ensemble techniques. The pipeline and techniques reflect our experience with a competition, in which we were able to reach a highly competitive solution and ended in fourth place. The uniqueness of our solution is that we used only free Google Colab computation service and still overperformed many more computation extensive approaches.
Název v anglickém jazyce
A pipeline for detecting and classifying objects in images
Popis výsledku anglicky
With the increased accessibility to neural network frameworks and computation clouds, a wide range of competition websites offer real tasks for the neural network community to join. In this paper, we discuss a problem of object detection and classification. Based on our experience, we describe a general pipeline and necessary steps that may help researchers willing to participate in such competition. We partition the problem into two separate tasks. Firstly, we present state of the art for relevant neural networks concerning accuracy and computation time trade-off. Further, we create a survey of major techniques that leads to accuracy improvement. Namely, we recall image augmentation techniques, demonstrate the impact of various optimizers, and discuss ensemble techniques. The pipeline and techniques reflect our experience with a competition, in which we were able to reach a highly competitive solution and ended in fourth place. The uniqueness of our solution is that we used only free Google Colab computation service and still overperformed many more computation extensive approaches.
Klasifikace
Druh
D - Stať ve sborníku
CEP obor
—
OECD FORD obor
10200 - Computer and information sciences
Návaznosti výsledku
Projekt
<a href="/cs/project/EF17_049%2F0008414" target="_blank" >EF17_049/0008414: Centrum pro výzkum a vývoj metod umělé intelligence v automobilovém průmyslu regionu</a><br>
Návaznosti
P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)
Ostatní
Rok uplatnění
2020
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název statě ve sborníku
Proceedings of IEEE Third International Conference Data Stream Mining & Processing 2020
ISBN
978-1-7281-3214-3
ISSN
—
e-ISSN
—
Počet stran výsledku
6
Strana od-do
163-168
Název nakladatele
IEEE
Místo vydání
—
Místo konání akce
Lvov, Ukrajina
Datum konání akce
21. 8. 2020
Typ akce podle státní příslušnosti
WRD - Celosvětová akce
Kód UT WoS článku
—