Poly-YOLO
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F61988987%3A17610%2F20%3AA210268M" target="_blank" >RIV/61988987:17610/20:A210268M - isvavai.cz</a>
Výsledek na webu
<a href="https://gitlab.com/irafm-ai/poly-yolo" target="_blank" >https://gitlab.com/irafm-ai/poly-yolo</a>
DOI - Digital Object Identifier
—
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Poly-YOLO
Popis výsledku v původním jazyce
We present a new version of YOLO with better performance and extended with instance segmentation called Poly-YOLO. Poly-YOLO builds on the original ideas of YOLOv3 and removes two of its weaknesses: a large amount of rewritten labels and inefficient distribution of anchors. Poly-YOLO reduces the issues by aggregating features from a light SE-Darknet-53 backbone with a hypercolumn technique, using stairstep upsampling, and produces a single scale output with high resolution. In comparison with YOLOv3, Poly-YOLO has only 60% of its trainable parameters but improves mAP by a relative 40%. We also present Poly-YOLO lite with fewer parameters and a lower output resolution. It has the same precision as YOLOv3, but it is three times smaller and twice as fast, thus suitable for embedded devices. Finally, Poly-YOLO performs instance segmentation using bounding polygons. The network is trained to detect size-independent polygons defined on a polar grid. Vertices of each polygon are being predicted with their confidence, and therefore Poly-YOLO produces polygons with a varying number of vertices. Source code is available at https://gitlab.com/irafm-ai/poly-yolo.
Název v anglickém jazyce
Poly-YOLO
Popis výsledku anglicky
We present a new version of YOLO with better performance and extended with instance segmentation called Poly-YOLO. Poly-YOLO builds on the original ideas of YOLOv3 and removes two of its weaknesses: a large amount of rewritten labels and inefficient distribution of anchors. Poly-YOLO reduces the issues by aggregating features from a light SE-Darknet-53 backbone with a hypercolumn technique, using stairstep upsampling, and produces a single scale output with high resolution. In comparison with YOLOv3, Poly-YOLO has only 60% of its trainable parameters but improves mAP by a relative 40%. We also present Poly-YOLO lite with fewer parameters and a lower output resolution. It has the same precision as YOLOv3, but it is three times smaller and twice as fast, thus suitable for embedded devices. Finally, Poly-YOLO performs instance segmentation using bounding polygons. The network is trained to detect size-independent polygons defined on a polar grid. Vertices of each polygon are being predicted with their confidence, and therefore Poly-YOLO produces polygons with a varying number of vertices. Source code is available at https://gitlab.com/irafm-ai/poly-yolo.
Klasifikace
Druh
R - Software
CEP obor
—
OECD FORD obor
10102 - Applied mathematics
Návaznosti výsledku
Projekt
<a href="/cs/project/EF17_049%2F0008414" target="_blank" >EF17_049/0008414: Centrum pro výzkum a vývoj metod umělé intelligence v automobilovém průmyslu regionu</a><br>
Návaznosti
P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)
Ostatní
Rok uplatnění
2020
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Interní identifikační kód produktu
Poly-YOLO
Technické parametry
Inovativní model neuronové sítě vytvořený na základě YOLOv3. Neuronová síť je naučená detekovat objekty v obrazových datech pomocí ohraničení polygony. Model si zachovává rychlost YOLOv3 a řeší některé z jeho principiálních problémů. Celý projekt je realizován v jazyce Python za pomocí frameworků Tensorflow a Keras.
Ekonomické parametry
Freeware, software si po jeho zveřejnění na veřejném repositáři, zkopírovaly desítky uživatelů.
IČO vlastníka výsledku
61988987
Název vlastníka
Ostravská univerzita