Fuzzy interpolation with extensional fuzzy numbers
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F61988987%3A17610%2F21%3AA220277C" target="_blank" >RIV/61988987:17610/21:A220277C - isvavai.cz</a>
Výsledek na webu
<a href="https://www.mdpi.com/2073-8994/13/2/170" target="_blank" >https://www.mdpi.com/2073-8994/13/2/170</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.3390/sym13020170" target="_blank" >10.3390/sym13020170</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Fuzzy interpolation with extensional fuzzy numbers
Popis výsledku v původním jazyce
The article develops further directions stemming from the arithmetic of extensional fuzzy numbers. It presents the existing knowledge of the relationship between the arithmetic and the proposed orderings of extensional fuzzy numbers—so-called S-orderings—and investigates distinct properties of such orderings. The desirable investigation of the S-orderings of extensional fuzzy numbers is directly used in the concept of S-function—a natural extension of the notion of a function that, in its arguments as well as results, uses extensional fuzzy numbers. One of the immediate subsequent applications is fuzzy interpolation. The article provides readers with the basic fuzzy interpolation method, investigation of its properties and an illustrative experimental example on real data. The goal of the paper is, however, much deeper than presenting a single fuzzy interpolation method. It determines direction to a wide variety of fuzzy interpolation as well as other analytical methods stemming from the concept of S-function and from the arithmetic of extensional fuzzy numbers in general.
Název v anglickém jazyce
Fuzzy interpolation with extensional fuzzy numbers
Popis výsledku anglicky
The article develops further directions stemming from the arithmetic of extensional fuzzy numbers. It presents the existing knowledge of the relationship between the arithmetic and the proposed orderings of extensional fuzzy numbers—so-called S-orderings—and investigates distinct properties of such orderings. The desirable investigation of the S-orderings of extensional fuzzy numbers is directly used in the concept of S-function—a natural extension of the notion of a function that, in its arguments as well as results, uses extensional fuzzy numbers. One of the immediate subsequent applications is fuzzy interpolation. The article provides readers with the basic fuzzy interpolation method, investigation of its properties and an illustrative experimental example on real data. The goal of the paper is, however, much deeper than presenting a single fuzzy interpolation method. It determines direction to a wide variety of fuzzy interpolation as well as other analytical methods stemming from the concept of S-function and from the arithmetic of extensional fuzzy numbers in general.
Klasifikace
Druh
J<sub>imp</sub> - Článek v periodiku v databázi Web of Science
CEP obor
—
OECD FORD obor
10102 - Applied mathematics
Návaznosti výsledku
Projekt
Výsledek vznikl pri realizaci vícero projektů. Více informací v záložce Projekty.
Návaznosti
P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)<br>S - Specificky vyzkum na vysokych skolach
Ostatní
Rok uplatnění
2021
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název periodika
Symmetry
ISSN
2073-8994
e-ISSN
—
Svazek periodika
13
Číslo periodika v rámci svazku
2
Stát vydavatele periodika
CH - Švýcarská konfederace
Počet stran výsledku
35
Strana od-do
1-35
Kód UT WoS článku
000623125500001
EID výsledku v databázi Scopus
2-s2.0-85099939523