Formal analysis of Peterson's rules for checking validity of syllogisms with intermediate quantifiers
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F61988987%3A17610%2F22%3AA2302GXS" target="_blank" >RIV/61988987:17610/22:A2302GXS - isvavai.cz</a>
Výsledek na webu
<a href="https://www.sciencedirect.com/science/article/pii/S0888613X22001141" target="_blank" >https://www.sciencedirect.com/science/article/pii/S0888613X22001141</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1016/j.ijar.2022.08.002" target="_blank" >10.1016/j.ijar.2022.08.002</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Formal analysis of Peterson's rules for checking validity of syllogisms with intermediate quantifiers
Popis výsledku v původním jazyce
In this paper, we follow up on previous publications in which we studied generalized Peterson's syllogisms with intermediate quantifiers. We present results of two kinds. First we show that on semantic level all the valid syllogisms follow from two inequalities and one equality. Furthermore, we focus on six rules suggested by Peterson in his book using which he was able to verify validity of all syllogisms. The problem is that the rules are formulated in free natural language and so, they do not provide formal means using which it would be possible to explain why the rules do their job. Therefore, we suggested formal reformulation of them and showed that all the valid syllogisms with intermediate quantifiers indeed satisfy Peterson's rules.
Název v anglickém jazyce
Formal analysis of Peterson's rules for checking validity of syllogisms with intermediate quantifiers
Popis výsledku anglicky
In this paper, we follow up on previous publications in which we studied generalized Peterson's syllogisms with intermediate quantifiers. We present results of two kinds. First we show that on semantic level all the valid syllogisms follow from two inequalities and one equality. Furthermore, we focus on six rules suggested by Peterson in his book using which he was able to verify validity of all syllogisms. The problem is that the rules are formulated in free natural language and so, they do not provide formal means using which it would be possible to explain why the rules do their job. Therefore, we suggested formal reformulation of them and showed that all the valid syllogisms with intermediate quantifiers indeed satisfy Peterson's rules.
Klasifikace
Druh
J<sub>imp</sub> - Článek v periodiku v databázi Web of Science
CEP obor
—
OECD FORD obor
10101 - Pure mathematics
Návaznosti výsledku
Projekt
<a href="/cs/project/EF17_049%2F0008414" target="_blank" >EF17_049/0008414: Centrum pro výzkum a vývoj metod umělé intelligence v automobilovém průmyslu regionu</a><br>
Návaznosti
P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)
Ostatní
Rok uplatnění
2022
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název periodika
International Journal of Approximate Reasoning
ISSN
0888-613X
e-ISSN
—
Svazek periodika
—
Číslo periodika v rámci svazku
150
Stát vydavatele periodika
NL - Nizozemsko
Počet stran výsledku
16
Strana od-do
122-138
Kód UT WoS článku
000863227500007
EID výsledku v databázi Scopus
2-s2.0-85136565604