On an Application of Lattice Integral Transforms in Image Processing
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F61988987%3A17610%2F22%3AA2302HC1" target="_blank" >RIV/61988987:17610/22:A2302HC1 - isvavai.cz</a>
Výsledek na webu
<a href="https://www.mdpi.com/2227-7390/10/21/4077?type=check_update&version=1" target="_blank" >https://www.mdpi.com/2227-7390/10/21/4077?type=check_update&version=1</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.3390/math10214077" target="_blank" >10.3390/math10214077</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
On an Application of Lattice Integral Transforms in Image Processing
Popis výsledku v původním jazyce
The lattice integral transforms have been introduced to generalize lower and upper fuzzy transforms for lattice-valued functions that are used to approximate original functions from below and above. They are defined in complete analogy with classical integral transforms, particularly, the product of a lattice-valued function and a fuzzy relation called the integral kernel is integrated by a Sugeno-like fuzzy integral. In the article, we first investigate the conditions under which lattice integral transforms preserve (reverse) constant functions, which appears to be a fundamental presumption for a successful approximation of lattice-valued functions. Further, we show how the lattice integral transforms can be applied in image processing, more specifically, in non-linear filtering, compression/decompression, and opening/closing of images. We demonstrate that the filters based on integral transforms generalize the popular median filter as well as minimum and maximum filters, and also opening and closing defined using fuzzy morphological erosion and dilation. We illustrate the proposed methods in various selected images.
Název v anglickém jazyce
On an Application of Lattice Integral Transforms in Image Processing
Popis výsledku anglicky
The lattice integral transforms have been introduced to generalize lower and upper fuzzy transforms for lattice-valued functions that are used to approximate original functions from below and above. They are defined in complete analogy with classical integral transforms, particularly, the product of a lattice-valued function and a fuzzy relation called the integral kernel is integrated by a Sugeno-like fuzzy integral. In the article, we first investigate the conditions under which lattice integral transforms preserve (reverse) constant functions, which appears to be a fundamental presumption for a successful approximation of lattice-valued functions. Further, we show how the lattice integral transforms can be applied in image processing, more specifically, in non-linear filtering, compression/decompression, and opening/closing of images. We demonstrate that the filters based on integral transforms generalize the popular median filter as well as minimum and maximum filters, and also opening and closing defined using fuzzy morphological erosion and dilation. We illustrate the proposed methods in various selected images.
Klasifikace
Druh
J<sub>imp</sub> - Článek v periodiku v databázi Web of Science
CEP obor
—
OECD FORD obor
10201 - Computer sciences, information science, bioinformathics (hardware development to be 2.2, social aspect to be 5.8)
Návaznosti výsledku
Projekt
<a href="/cs/project/EF17_049%2F0008414" target="_blank" >EF17_049/0008414: Centrum pro výzkum a vývoj metod umělé intelligence v automobilovém průmyslu regionu</a><br>
Návaznosti
P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)<br>S - Specificky vyzkum na vysokych skolach
Ostatní
Rok uplatnění
2022
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název periodika
Mathematics
ISSN
22277390
e-ISSN
—
Svazek periodika
—
Číslo periodika v rámci svazku
21
Stát vydavatele periodika
CH - Švýcarská konfederace
Počet stran výsledku
30
Strana od-do
1-30
Kód UT WoS článku
000885813700001
EID výsledku v databázi Scopus
2-s2.0-85141822888