Closure theory for semirings-valued fuzzy sets with applications to new fuzzy structures
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F61988987%3A17610%2F23%3AA2402GSM" target="_blank" >RIV/61988987:17610/23:A2402GSM - isvavai.cz</a>
Výsledek na webu
<a href="https://www.sciencedirect.com/science/article/pii/S0888613X23000841" target="_blank" >https://www.sciencedirect.com/science/article/pii/S0888613X23000841</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1016/j.ijar.2023.108953" target="_blank" >10.1016/j.ijar.2023.108953</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Closure theory for semirings-valued fuzzy sets with applications to new fuzzy structures
Popis výsledku v původním jazyce
Many of the new fuzzy structures, including intuitionistic, neutrosophic, or fuzzy soft sets, define their oven theories and methods for operations with their fuzzy structures, including topological constructions. In the paper we show how basic closure methods could be universally defined in a number of new fuzzy structures, without having to define a new theory for individual fuzzy structures. This approach is based on the transformation of these fuzzy structures into a new type of fuzzy set, called $AMV$-valued fuzzy sets, whose value sets are special pairs $R$ of commutative and idempotent semirings. The main advantage of this procedure is that all theoretical results that are proved for $AMV$-valued fuzzy sets can be relatively easily transformed into an analogous result in all new fuzzy structures that can be transformed into $AMV$-valued fuzzy sets, without the need to prove this result for individual types of fuzzy structures.
Název v anglickém jazyce
Closure theory for semirings-valued fuzzy sets with applications to new fuzzy structures
Popis výsledku anglicky
Many of the new fuzzy structures, including intuitionistic, neutrosophic, or fuzzy soft sets, define their oven theories and methods for operations with their fuzzy structures, including topological constructions. In the paper we show how basic closure methods could be universally defined in a number of new fuzzy structures, without having to define a new theory for individual fuzzy structures. This approach is based on the transformation of these fuzzy structures into a new type of fuzzy set, called $AMV$-valued fuzzy sets, whose value sets are special pairs $R$ of commutative and idempotent semirings. The main advantage of this procedure is that all theoretical results that are proved for $AMV$-valued fuzzy sets can be relatively easily transformed into an analogous result in all new fuzzy structures that can be transformed into $AMV$-valued fuzzy sets, without the need to prove this result for individual types of fuzzy structures.
Klasifikace
Druh
J<sub>imp</sub> - Článek v periodiku v databázi Web of Science
CEP obor
—
OECD FORD obor
10102 - Applied mathematics
Návaznosti výsledku
Projekt
<a href="/cs/project/EF17_049%2F0008414" target="_blank" >EF17_049/0008414: Centrum pro výzkum a vývoj metod umělé intelligence v automobilovém průmyslu regionu</a><br>
Návaznosti
P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)
Ostatní
Rok uplatnění
2023
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název periodika
INT J APPROX REASON
ISSN
0888-613X
e-ISSN
—
Svazek periodika
—
Číslo periodika v rámci svazku
2023
Stát vydavatele periodika
NL - Nizozemsko
Počet stran výsledku
25
Strana od-do
1-25
Kód UT WoS článku
001035543600001
EID výsledku v databázi Scopus
—